International Commission for

Serial No. 3677
(D.c.9)

the Northwest Atlantic Fisheries

ICNAF Res.Doc. 75/IX/126

SEVENTH SPECIAL COMMISSION MEETING - SEPTEMBER 1975

The application of mixed fisheries theory to the cod and redfish stocks of Subarea 2 and Division 3 K
by
J.G. Pope

Ministry of Agriculture, Fisheries and Food
Lowestoft, Suffolk, England

INTRODUCTION

In idenfoundland 'fish' means cod unless otherilise statod which gives some Indication of the imporiance of this species to the fisheries of the area. It has provided 30% of the catch of groundfish from Subarea 2 and Division 3 K in the last 15 years. It the cod stock is in a depressed state the total groundilsh resources of the area nust be deprossed regardless of the strongth or weakness of oinci siscies. Therefore it is important to isolate the managemont need of the cod fron these of the other groundfist. In doing this, however, it is necessary to ask whether there are any biological or fisheries interactions to consider with other species. Clearly it is deslrable that a mixed fishery mindel such as that doveloped by Pope (1975a) be applled, and proposals for management regions be viewed in the light of the model.

Tre arralchtivo of the schaefer model to the groundfish of subarea 2 Miv Ulvisiua

Pintion (1975) found that the groundfish resources of Subarea 2 and Division 3K eanisiteo catch per effort trends which corrclated signislicantly with the fishing effort adjusted by Gulland's mathod (Gulland 1968) to allow for nonequillorium eftects. This was true for three separate units of fishing effort and all three suggested that the overoll mazimum yleld for groundish was of the order of 400 thaisend matric tons. Thore was ho:ever somo divergence batieen
 to achicuo this maximun sustalnablo ylold. A untt of offort basod on 901-1800 ton vessols of Feance, Poriugal and Spoin sussosted a cut back of i7\% from the 1973 leval of effort. A unit of effort besed cin tha> 1800 ton vessels of the

USSR and Roland suggestod that a cut back of about lij would bo appropriate while a unit c: effort based on Spanish other trowler (OT) cod zdiches suggested a
 of the various ileet objectives. The Spanisn effort which is based entirely on cod shows tho need for the greatest cut back wile the USSR and Pollsh effort, which is amongst the most diverse, shous the loast. Another reason for the discrepancy is that only the Spanish offort is adjusted for soasonallity and for that floot, at least, the tendency has been for catches to bo increasingly made in the earlier months ut the year whon cod is mejt casily caught. The lack of such an adjustment for the other measures of effort might have risked the true increase in fishing effort in recent years. Against this point it should be noted that the levels of fishing mortality estimated by virtual population analysis for the total 2J-3K 3L cod stock have not shown the same increase in recent years as displayed by the Spanish effort. This could be a result of either the Spanish otter trawlers becoming older and becoming less officient or possibly as a rosult of optimistically lo: values of fishing mortality being used to initiate the virtual population analysis. Whlchever effort measure is used if is ciear from Pinhorn's 1975 work that all three measures suggest that the total groundfish catch per effort for Subarea 2 and Division 3 K can be represented by a Schaefer type model. It is also clear that cod is by far the largest component of the groundfisn resource and it would therefore seem likely that cod would itself follo:i a Senaefer type yield curve. Using the Spanish O.T. measure of effort from Pinhorn's (1975) paper and regressing the resulting cod catch per effort on six year running averages of the effort gives a significant linear
 alternative matnod of fitting the Schaefer yield function was suggested by Walter (1975) whicn consists of regressing the catch per offort in year $i+1$ against the effort in year i. This mathod also gives a significant regression
 regression gives a MSY of 352000 metric tons at an effort of 217 thousand hours flshing while the latter suggests a MSY of 417000 metric tons at an effort of 263 thousand hours fishing. Both methods suggest that the stock has been substantially overfished in recent years and that the 1973 level of effort needed cuttling back by 32 解 in the former case or by 18% in the latter case in order to bring the stock back ta the MSY level of exploitation.

Apart from the cod, one of the other groundfish resources has also been shown to have a Schaefer type yleld curve. This is the redfish. Pinhorn and Parsons (l97:! Eerive several fossible yiela eurves for this species, one of which is based on a six year averaging perlod, arc has an equation goverring its equiliorium behaviour of

$$
R=32.47-0.0056 \mathrm{fr}
$$

............ I
Where R is the catch per effort of redflsh and fr is the fishing effort on redfish averaged over the last 6 years and is measurec in stariuurd days fisined by vessels of greater than 1800 tons. This two of the most Impurtant stocks of fish in the region appear to follow Schaefer type yield curves. Since these stocks have accountod for 91% of the total catch in the period it is not perhaps so surprising that the total catch appears to follow a Schaefer type yield curve. Pope (1975a) points out that where total effort develops in a constant ratio on two noninteracting fish stocks and both have parabolic yleld functions, then the resulting joint yleld function on total effort will also be parabolic. But the maximum yield it predicts need not necessarlly be the true MSY of the system nor need the level of effort at which this apparent maximum yield is attalned be the level of effort that correctly applied would give the true maximum yields of the system. Horwood (1975) suggests that the equillbrlum development trajectory of a fishery need not necessarily pass through the overall MSY of such a system.


```
Aid こivisivid \(3 k\)
```

Since both the cod and the redfish stocks of subarea 2 and Division $3 K$ have yield curves that can possibly be represented by parabolas the mixed fishery theory advanced by Pope (1975a) should be applicable, provided that there are no strong biological interactions between the specles; for example, similar to the type shown by Pope and Harris (1975) for the South African Eilceerd and anchovy stocks and discussed in detail by Pope (1975b). Attempts to improve the regressions for sod and for redfish using the catch rate of the other species as a second Independent variable resulted in no significant coefficients for this variable. It would thus seem that if there are biological interactions between these two species they are of a sufficiently low order to be lgnored for practical purposes; consequently the total yield for the redfish and cod was calculated for different levels of fishing effort and assuming no interactlons. figure 3 shows the contours of equal yleld in relation to the effort on both species. The individual
stock yie:d curvos weod to construct this joint stock function were Pinhorn ano Parsons (1974) yield curve for the redfish fitted using the six year running avarages of effort and the yield curve developed for cod in the previous section \equiv ad using the six year rurning average method of fitting. This was chosen"in order to choose the more pessimistic and therefore safer formulation and to, remain consistent: uith the overall yield function of Pinhorn (1975). The basis of effort usea for the cod was the Spanish OT hours fished. In order to make it compatible with the standard days fished figure for the redfish, it has been divided by twelve. This figure was chosen because of a comparison of the cod catch rates rase
 Sparish ur catch rates; it subgujted that this was an appropriate tigure. Thus ine parallel diagonal linos on Figura 3 show the levels of the total joint offort on the tho specles in standard days fished by vessels greater than 1800 tons. The contours of equal total yield are concentric ellipses with their major and minor axes parallel to the co-ordinate axis. These indicate that the maximum yleld for cod and redfish combined is of the order of 400 thousand metric tons, attained at an overall flshing effort of about 21500 standard days fishing. It is thus interesting that these two stocks alone exhibit the sama MSY yield as that obtained from all groundfish species by Plnhorn (1975) particularly as similar masures of effort and avoraging perlods were used. This seems to bear out Pope's (1975a) suggestion that the total yield obtained from assessments of total groundfish would tend to give lower bounds to the total riaximum sustainable yield of a system. This is niore believable when the development trajectory o: inese two fisheries is examired. This is superimposed on the yield function in Figure 3 and shows that the z"zoortions of tisnins $e^{=}=\cdots$.... these fwo fish stocks have fluctuated considerably in the period from 1959 to 1973. It is of course possible that if tre other groundfish resources of this region were strongly interactive with cod and redfish then the fiyure of 400000 metric tons for cod and redfish alone would de compatible with finnorn's (1975) 400 viO metric tons for all grounctish. This is because in that case the other grouncfish species might only nave increased in abundance after the cod and the rectisn were depleted. This nypothesis is superficially tempting in the light of Pinncrn's (1975) fijurn 2 mic: - aws the propertion or 2 erer sideies in the catch increasing dramatically after 1909 when the cod and the redfish ware both exhioiting low catch rates. Unfortunately, due to the lack of specific effort measures for these species in the area this hypothesis cannot be tested
directly．Nevertheless，the presence of older fish in significant quantities in the catch of several of the species of other groundfish，for example roundnose grenadiers（Pinhorn 1974）and Greenland nalibut（Bowering and Pitt 1975），suggests that they have not increased vastly in abundance in the recent past，and thus it is probably that they do not strongly interact with the cod or redfish．It is probable that the total groundfish MSY for this region is greater than the 400000 tons joint maximum yleld of the cod and redfish．

POSSIBI＿ITIES ここ？THE MANAGENENT OF THE CCこ，REDFISH AND OTAER CROUUEFIṢ＇4 STOCK COMPLEX is Suミñed 2 and divisicin 3 K

Management of fish stocks in Subarea 2 and Division 3K has untll now been based on individual stock catch quotas designed to maximise the yield of each stock in isolation．In the light of the disturbing trends in catch rate shown by Pinhorn（1975）and Indicated by groundfish survey results（Anon．＂1975）it is certalnly sensible to ask if other methods of management might bo more appropriate．In particular it is interesting to ask if either a total effort quota or a total catch quota would serve a useful purpose．Superficially the use of an overall effort quota as the only management control in this region seems likely to be disastrous in the llght of the volatility of the development trajectory shown in Figure 3，and clearly such a constraint would seem unllkely to prevent heavy overfishing of redfish．For example the overall level of effort in 1973 was not much different from that In 1959，and also the situation in 1973 for cod was rather simllar to that in 1959 （see fo－example figure 1）． However the redfish stock in 1959 was being explolted at the total destruction level of effort while in 1973 the level of effort on it was rather below the MSY level．This is a feature of the much greater level of effort needed to attain MSY for cod（ 18000 standard day）compared to that needed to attain MSY for redfish（C 3000 standard days）．The case with other species inight well be rather similar with a tendency for them to be heavily overfished if they became attractive to fishing effort；Fcr example as a result of a large year class or a further decline in the catch rate of cod．In order to examine this management method more objectively a simulation was made of the cod and redfish fisheries assuming they followed the non－equillbrium form of the Schaefer curve

$$
\frac{1}{P} \frac{d P}{d t}=b-a P-q f \quad \ldots \ldots \ldots \ldots \ldots .
$$

where P is the stock blomass，f is the fishing effort and q the catchability coefficient．The parameters b and a and q were chosen to be consistent
with ire fitted yielo curves but in order to provide the third parameter it was necessicy to assumia the MSY level of fishing mortality. Consequentiy a value of WSY $F=0.2$ was adopted for the redfish and a MSY $F=0.3$ was adopted for the cod. In order to be able to simulate the joint fishery for both species it was ussumed that the proportion of the total effort going on cod was given by

$$
\begin{aligned}
& \left.(v \operatorname{Co})^{n} /\left(\text { v }^{(v)}\right)^{n}+(w R \hat{q})^{n}\right) \\
& 3
\end{aligned}
$$

where r is some power, v and w are preference vieightings for the cod and redfish respectively, C is the biomass of cod, R the biomass of -edtisi and q and \hat{q} are tac respective catchabilities of the two specles. This is analogous to the economic weightings used in the ecoel Dy C•oygen (1972) siscusse 1 ay Garrod ano pope $(: 072)$. In order to acquire values of n, v and w a regression of $\ln \left(\frac{f c}{f r}\right)$. on $\ln \left(\frac{c}{r}\right)$ was performed for the years 1959 and 1973 where $f c$, Ir wern the effort applied to cos and rediish respectimly each yair and c and r were the recoruw sutches per effort of the two species. No significant regression emerged from this onalysis and consequently, in ordor to be able to make a simulation, values i: $n=2, v=\angle$ and $w=1$ were adoptod. A simulation on these values was perforined dut, not surprisingly, it did not reproduce the ristorical serles and the developmental trajectory it produced was far less volatlle than the true series. In particular, the rotio of effort going on redflsh to that going on cod was very much more regular than the ratio observed in the historic series. Tade 1 shows the historic series and the simulated series for the period 1959-73. This simulation was extended to show the possible behaviour of the mixed fishery under an overall effort quota (21000 standard days) designed to achleve the MSY for the system. Table 2 shows the results from this similation. It is apparent that the simulation repidiy setiled down to a lovel of effort for the cod of abour, 7h0 cays and a level of ethort for the redfish of about 4000. Figure 3 inaicotus tict this would in tias gqullitriun case achieve a joint yield in excess of 372 thousand metric tons. In fïct the simulation finally setties doun to a yie:c of zef thousand retric rons, a very substantial portion of the joint bisy of 40 oscmia martic rons. Inus, it the uffort were distributed between stocks
 equation anc no other species atiected the Dalance, then the total effort quota could de expected to quite successfully manage these two stocks. This is in line witr iorwuag', (1975) finuiris mat such a systom woulo tend to converge to some equibidrium level for the two stccks. In fact, of course, the model of fisheries preforences for species (equation 3) is at dest a very poor fit to the facts and

Schaefer curves very rarely fit a stock closely. Thus the equilibrium behaviour simulated would in practice tend to be disrupted by random events such as unusually large or small year classes or changes in catchability. Clearly a total effort quota might well be a good deal less efficient than the simulation In Table 2 would suggest.

Similar simulations were made of the effects of overall catch quotas. The levels of quota considered ware 250, 260, 270, 280, 290, 300, 310, 320 and 330 . thousand metric tons. The method of making these simulations was to divide each year into ten equal periods and simulate in each period the proportion of fishing effort being applied to each stock, according to equation 3. Fishing was stopped at the end of the time period in which the catch quota was exceeded. This method of slmulating a catch quota invarlably led to the quota being exceeded, in some cases by amounts in excess of 10%. (Thus accidentally adding verisimilitude to the simulation). A total effort constraint of 30000 days was put into the simulation to avoid quotas being taken by improbably high levels of fishing effort. All of the quotas over 310 thousand tons eventually came up agalnst this constraint, implylng that they would lead to overflshing of the two stocks if applied at present. It would however be possible to bring total catch quotas up to some higher level at a later time if the stocks were first allowed to rebuild at the lower quota levels. The simulations showed the same well behaved distribution of fishing effort observed for the effort quota simulation. Since this was achleved under the same model assumptions this simulated behavlour is open to the same criticisms as were levelled of effort quotas. A third possibility for management would be a stock constraint as suggested by Garrod (1975). This would imply reducing fisting untll the cod catch rate increased to 1.62 tons per Spanish OT hour and until the catch rate of redfish increased to 16.24 tons per standard day fished. This would imply resting the cod for about 2 years or fishing at an effort level below MSY for a longer period. The catch rate of redfish is currently at about this level.

DISCUSSION

The Schaefer curves fitted to the cod for Subarea 2 and statistical area 3 K suggests that this fish stock has been very seriously overflshed in recent years. The overall yiela function for redfish and cod suggests that Pinhorn's (1975) estimate of 400000 tons for the total groundfish resources of this region may be somewhat pessimistic but stlll implies that the 1973 level of fishing effort
needs reducing oy about 28% on these two stocks. The lack of observable biological interaction tet::een these two stocks and indeed the other groundfish stocks suggasts that there is no biological reason why individual stock catch quotas should not de successful provided they are set at the right level.

A study of the development trajoctory in Figure 3 suggests that the directed fisheries for these two species are sufflciently pure (ie have low w aten rates) to include the joint MSY levels of effort in a region that is attainable. Thus the possidle arguments relaying to the overall attainade MSY a^{-}a system's deing lower than the joint MSY, advanced in Pope (1775a., are not valid in this zose. unile the overall MoY is attainable in the longtarm equilibrium sense, simulutions of a total catch quota suggest that such a quota or the sum of the two specius quotas should be well below the MSY level of 400 thousand tons due to the depleted state of the cod stock.

REFERENCES

ANON., 1975. Report of Assessments Subcommittee April 1975. Annu. Reet. 11t. Comm. Northw. Atlant. Fisn, 1975, Summ. Doc. No. 18. Serlal No. 3498. (mimeographed).

BOWERING, W. R. and Pitt, T. K., 1975. Yield per recruit assessment of Greenland halibut (Reinhardtlus hippoglossoides), ICNAF Subarea 2 and Divisions 3 K and L.

CLAYUEN, A. D., 1972. Simulation of changes in abundance of the cod Gadus morhua L.) and the distribution of fisning in the North Atlantic. Fishery Invest., Lond., Ser. 2, 27, 58.

GARROU, D. J. and Pope, J. G., 1972. The assessment of complex fishery resources. In "tconomic aspects of fish production." O.E.C.D. Symposium on Fisheries tconomics. 480.

Gulbinj, J. A., 1968. Manual of mathods for fish stock assessment. Part 1. Fish population analysis. FAO Fish. Tech. Rep. FRS/T40 Rev. 2, 97p.

HORIicuu, J. :., 1975. Interactive fisneries - a 2 species Sanaefer madel. This meeting.

PINGCRN, A. T., 1974. Preliminary estimates of sustainable yieli for roununose grenadiers (Macrourus rupestris) in ICVAF Subareas 2 and 3. mnnu. Meet. int. comm. Norihw. Atlant. Fish, 1974. Nes. Doc. No. o. Serial ko. 3149. (1.. evgraphed).

Plinnễ., i. T., 1975. Catch and eftort relationships of the groundfish resource in Subareas 2 and 3. nnnu. Heet. int. Corm. Nortiw. Atlant. Fisia, 1975, Res. Doc. No. 55. Serial No. 35j5. (mimiographec).

PMi:URi, A. T. and Parsons, .. S., ig74, jtatus of redfish fisnery in IONAF

Pope, J. E. dra Centurier rierris, 0., (997j). The South African pilcherd and ancro:! stock comp!ox, an ekample of the cffects of blological interacions di..ivit speaies on menacsinant strates\%. This meeting.
 ivoriny. Atiant. Fish, 197j. Res. Doc. No. 119, Serial No. 362U. (mimeographea).

PuPE, J. $\mathrm{B} .(1975 \mathrm{D})$. Tha effoct of Diological interactions on the theory of mixed fisneries. This meeting.
$\therefore A^{-} \equiv, 3.3 ., 1975$. Graphical merroods for estimating parameters in simple models of tisneries. Annu. Meet. int. Corm. Northw. Atlant. Fish, 1975. Res. Doc. iso. 21, Serial ino. 303U. (mimeographed).

TABLA 1
Simulation of the historic series for the cod and redfish stocks

	Fistorical levels of Cod and Redfish iffort		Redfish as $\%$ of Cod	Simulated levels of Cod and Redfish Effort		Redfish as \% of Cod
	Coc	Redfish		Cod	Redfish	
1959	21667	5800	27	22139	5861	26
1950	18333	5700	31	19530	4470	23
1961	12500	4200	34	14077	2922	21
1962	10830	1100	10	10907	2092	19
1963	12500	1200	10	11820	2179	18
1904	15000	4200	23	16011	2989	19
1965	20000	2400	12	19276	3723	19
1966	22500	2800	12	20885	4115	20°
1967	19170	2000	10	18414	3586	19
1968	25830	1403	5	22613	4387	19
1969	20330	1700	6	25067	4933	20
1970	31670	1400	4	26709	5291	20
197	30830	1700	6	- 26734	5266	20
1972	37500	1600	4	32524	6476	20
1973	20667	2400	9	24285	4715	19

F 10

TABLE 2
Simulation of an overall effort quota from 1974 onwards Total effort is 210,000 standard days

Year	Total Effort		Total Yield
	Cod	Reàfish	
1974	14949	co51	227582
1975	15915	5085	260324
1970	16406	4594	290976
1977	16654	4346	316071
1973	16772	4228	335382
1979	16819	4181	349758°
1980	16827	4773	360282
1981	16816	4184	367939
1932	16798	$420 ?$	373510
1983	16778	4222	377580
1984	16758	4242	380567
1985	16741.	4259	382772
1985	16727	4273	384408
:937	16716	4284	385627
1938	16706	4294	386539
1989	16699	4301	387223
1990	16693	4307	387737
1991	16689	4311	388124
1992	16686	4314	388417
1993	16683	4317	388637
1994	16681	4319	388804
1995	16680	4320	385930
1996	16678	4322	389025
1997	$160 ¢ 78$	4022	385,098
1990	16077	4323	389152
1999	16676	4324	3891\%
2000	16676	4324	389:35
2001	16676	4324	389248
2002	16675	4325	389267
2003	16675	4325	369280

- 11 -

Fig. 1. Regression of cod catch per unit effort against a 6-year MSY average of effort and the resulting Schaefer type yield curve.

Fig. 2. Regression of cod catch per unit effort against fishing effort in the previous year (Waller's method, lst approximation) and the resulting Schaefer type yield curve.

