International Commission for

the Northwest Atlantic Fisheries

ICNAF Res.DoC. 75/LX/132

SEVENTH SPECIAL COMMISSION MEETING - SEPTEMBER 1975

 Effects of increased vessel efficiency on effort regulation

 Effects of increased vessel efficiency on effort regulation}
by

J. A. Brennan, B. E. Brown, and J. E. Palmer
National Marine Fisheries Service
Northeast Fisheries Center
Woods Hole, Massachusetts 02543

Catch and effort data of fleets operating in ICNAF Subareas 5 and 6 during 1961-1973 were analyzed according to the method outlined in ICNAF Res. Doc. 75/18 in order to determine standardized days fished for each year. The days fished were standardized among vessel, gear, and national fleets. Year to year changes in fishing operations were not taken into account except for a fixed term (two-year) adjustment for "learning". Halliday and Doubleday (ICNAF Res. Doc. 75/43) suggested a method for adjusting reported days fished for continuing temporal changes in efficiency. This method was applied to the standardized days fished unadjusted for learning in Subareas 5 and 6.

The standardized days fished in year $t, f(t, a d j)$, were calculated as:

$$
f(t, a d j)=f(t, \text { rep }) \times \exp (k t)
$$

where $K=$ annual percent change in efficiency,
$f(t, r e p)=$ standardized days fished for year t,
where t takes on the values $t=0,1, \ldots 12$ (corresponding to the years 1973-1961). Data were generated using values of $K=-.04,-.06,-.08$, and -.10. The negative values of K allow the effort to be expressed in standardized units as of calendar year 1973. The linear equation of catch per unit effort on effort,

$$
c / f(t, a d j)=a+b f(t, a d j)
$$

was fit by least squares using a running average of three and five years for $f(t, a d j)$.

The results (Table 1) indicate little difference in the magnitude of the correlation coefficient, r, for $K=-0.04$ to -0.10 . The fitted line for $K=-0.08$ with a three year running average (the greatest magnitude of r and F) is portrayed in Figure 1. The corresponding catch-effort parabola is portrayed in Figure 2.

A study by the US reported to the ICNAF Effort Working Group (Redbook, 1975) estimated changes in fishing efficiency between 1971 and 1973 based on changes in catch per unit effort of vessel gear categories relative to catch per unit effort of US 0-50 T side trawlers. This simulation gave an increase in efficiency of 17 percent; that is an annual percentage change, K, of -.09 , which is similar to that determined from the above analysis.

With the relationship $K=-.08$, the estimated effort of 143,320 days fished related to the MSY was 65 percent of that actually expended in 1973. The 143,320 days fished, had they been expended in 1973 (1.e., multipited by 5.27 tons per day) would have resulted in a catch of 755,296 tons, an estimate of the TAC for 1973 to achieve the goal of MSY effort.

[^0]If, in fact, there is a constant, long-term, increasing efficiency, then the effort applied in future years must also be discounted in order to properly regulate fishing mortality. The question is how to account for this factor when setting future effort or catch regulations to achieve, say, MSY on the basis of prior assessment at a fixed point in time, viz. 1973.

The effort scale in Figure 1, $f(t, a d j)$, is such that it corresponds to $f(t, r e p)$ in 1973. The scale can be adjusted to previous years or projected to future ones by adjusting the scale, that is, multiplying the days fished on the X axis in Figures 1 and 2 by the relative efficiency to 1973. These relative values are given below based on $K=-0.8$ and t_{0} being 1973.

Year	Efficiency relative to 1973
	0.79
1970	0.85
1971	0.92
1972	1.00
1973	1.08
1974	1.17
1975	1.27

The days fish in 1976 units (1973 units $\times 1.27$) are shown on the lower scale in Figures 1 and 2. The estimated (MSY) in these units is 112,850 days fished. Thus to achieve the objective of MSY the 34 percent reduction from 1973 is increased to a 49 percent reduction from the same 1973 effort base in order to discount hypothetical efficiency changes. Because this is in terms of total standardized effort, the percent reduction can be varied among vessel, gear, and national categories, of course, to achieve the overall objective.

The ICNAF Assessment Subcommittee in April 1975 (ICNAF Sum. Doc. $75 / 18$) noted that the sum of the recommended TACs for 1976 was 76% of the sum for 1974 (in 1973 TACs were not recommended for all groups). This was considered by the committee to reflect a decline in biomass. If we assume a total decline of 24% between 1973 and 1976, the expected catch in 1976 would be 574,025 tons if the area were fished at MSY effort. This is an estimate of the 1976 TAC to achieve the goal. Clark and Brown (1975), ICNAF Res. Doc. 75/65, Appendix, calculated that the total stock was declining at an average rate of 27.5% per year in the period 1972-1974. If this decline continued through 1976, it would result in a stock of only 38% of that in 1973. This stock size would yield catch in 1976 of only 287,012 tons if fished at the MSY effort level.
Table 1. Total catch, standardized effort, catch per unit effort, standardized effort adjusted for increase in efficiency per year, an

International Commission for

Serial No. 3684
ICNAF Res.Doc. 75/IX/132
(D.c.8)

the Northwest Atlantic Fisher

ADDENDOM

SEVENTH SPECIAL COMMISSION MEETING - SEPTEMBER 1975
Effects of increased vessel efficiency on effort regulation
by

J.A. Brennan, B.E. Brown and J.E. Palmer Northeast Fisheries Center
National Marine Fisheries Service Woods Hole, Mass. 02543 USA

Literature Cited

Brown, B. E., J. A. Brennan, M. D. Grosslein, E. G. Heyerdahl and R. C. Hennemuth.

The effect of fishing on the marine finfish biomass in the Northwest Atlantic from the eastern edge of the Gulf of Maine to Cape Hatteras. ICNAF Res. Doc. 75/18.

Clark, S. H., and B. E. Brown.
Changes in biomass of finfish and squid in ICNAF Subarea 5 and Statistical area 6 as evidenced by $A L B A T R O S S$ IV autumn survey data. ICNAF Res. Doc. 75/65.

Halliday, R. G., and W. G. Doubleday
Catch and effort trends for the finfish resources of the Scotian Shelf and an estimate of the maximum sustainable yield of groundfish + Addendum. ICNAF Res. Doc. 75/43 (Rev.).

ICNAF Report of Assessments Subcommittee, April 1975 + Corrigendum. ICNAF Summ. Doc. 75/18.

[^0]: 1 All ICNAF documents will now be numbered to include the month (in Roman numerals) of the meeting at which they were presented.

