International Commission for

Serial No. 3689

the Northwest Atlantic Fisheries

ICNAF Res.Doc. 75/IX/136

SEVENTH SPECIAL COMMISSION MEETING - SEPTEMBER 1975
Eastern Scotian Shelf Cod (ICNAF Div. 4VsW)

- a reconstruction of possible events in the fishery in 1958 to 1974 and a re-estimation of potential yield.
by
R. G. Halliday

Fisheries and Marine Service Biological Station St. Andrews, N. B.

Canada

INTRODUCTION

Assessment of the status of the cod stock complex in ICNAF Subdivision 4Vs and Division 4 W has been hindered by the low level of biological sampling of commercial catches. Increased sampling efforts by Spain and the USSR in the 1970's established that the catches of these countries are substantially different in size and age composition from those of Canada. An earlier yield assessment of these stocks (Halliday, 1972) was based on the assumption that Canadian sampling data were representative of all removals from the stocks. Inconsistencies in the results of that analysis imply that the differences in size and age compositions seen in the sampling data for the early 1970's were important also in the 1960's.

In the present analysis, Country, Division, and seasonal stratifications are used in applying sampling data to catches in estimation of removals from the stocks. Available sampling data are inadequate to meet the demands of this detailed stratification and a variety of assumptions are required. The primary assumptions are that the size compositions of Spanish and USSR catches in the 1960's were similar to those in the 1970's.

GROWTH

Halliday (1972) fitted a von Bertalanffy growth curve to average mean lengths of ages 6-10 cod in 1960-71 Canadian commercial samples from Div. 4Vs-W combined. New data, particularly from research vessel surveys, allow refinement of growth estimates.

Mean length at age from Canadian commercial sampling data were calculated for each of three 5 year periods for January to June and July to December samples from Div. 4Vs and Div. 4W separately (Table 1). Mean lengths at age are also available from Canadian research vessel surveys conducted in July of 1970-74 in Div. 4Vs and Div. 4W (TabTe 2).

There are no consistent trends in length at age with time. Decreases in the size of 4 and 5 year olds between 1960-64 and 1970-74 in January-June in both Div. 4Vs and Div. 4W and increases in the size of these age groups in July-December in Div. 4W may reflect trends in the average time of sampling within the six month periods. Thus, the mean lengths in commercial samples between 1960 and 1974 and in surveys from 1970 to 1974 were used in constructing growth curves. Commercial January-June data were taken as an estimate of length of, say, 3 year olds at age 3.25, survey data at age 3.50, and commercial July-December data at age 3.75. There is close agreement between commercial and survey lengths at age (Fig. 1). Div. $4 W$ cod are slightly larger than Div. 4 V s cod of the same age after age 1.

Von Bertalanffy growth curves were fitted to data for ages 1.5 to 9.25 for Div. $4 V$ s cod and for ages 1.5 to 10.25 for Div. 4W cod giving the following parameters:

	Div. 4Vs		Div. 4 W
K	0.15	0.14	
t_{0}	-0.21	-0.07	
$\mathrm{~L}_{\infty}$	89.9 cm	102.5 cm	
$\left(\mathrm{~W}_{\infty}\right)$	$(7.12 \mathrm{~kg})$	$(10.37 \mathrm{~kg})$	

YIELD PER RECRUIT
Beverton and Holt yield per recruit isopleth diagrams were constructed to examine the effects of differences in growth parameters between Div. 4Vs and Div. 4W (Fig. 2). No estimate of natural mortality (M) is available for these stocks. Thus a value of $M=0.20$, which was ass to be generally applicable to northwest Atlantic cod stocks, was assumed. Other parameters used in the calculations were as follows:
$t_{\rho}: 1.0 \mathrm{yr}(=$ age at recruitment to the fishing area)
$t_{\rho^{\prime}}$: varied between 1.0 and 6.0 yrs (=age at recruitment to the exploited phase)
$t_{\lambda}=25$ yrs (= maximum age of significant contribution to the fishery)

Yield per recruit from Div. $4 W$ cod is higher than that from Div. aVs cod for the same age at recruitment to the fishery and fishing mortality rate (F). Over the range of t_{ρ}^{\prime} and F likely to prevail in the fishery the difference is approximately 20%.

The yield isopleth diagram presented by Halliday (1972) for Div. 4VsW combined gives intermediate values to those for Div. AVs and Div. 4W presented here, but is most similar to that for Div. 4W and thus, probably overestimates the yield per recruit from the eastern Scotian Shelf cod as a whole.

NOMINAL CATCHES

Cod catches from Div. 4VsW have averaged $60,000 \mathrm{mt}$ over the 15 year period 1960-74 (Table 3), but have been lower in most recent years (1970-74 average $=54,000 \mathrm{mt}), 1974$ catches being only 43,700 mt. Catches have been fairly equally distributed between Divisions. Spain has been the major exploiter of these stocks taking 61% of the yield over the last 15 years, followed by Canada taking 28%. Catches by the USSR have not exceeded 10,000 mt in any year and, except in 1963-66, have been less than $5,000 \mathrm{mt}$. Catches by France and Portugal were significant in the late 1950's, and moderately large catches by Denmark have occurred in the early 1970's. Catches in Table 3 for 1958 particularly, but also up to 1962, are subject to error, as not all countries reported their catches from Div. 4Vn and Div. AVs separately until 1963. The catch breakdown given by Hodder (MS 1972) is used here.

CATCH PER UNIT EFFORT

Halliday (1972) reviewed available catch per effort data for cod in Div. 4VsW and chose the catch rates of Spanish pair trawlers of 151-500 gross tons during their peak fishing period of February to April inclusive as the most useful indicator of cod abundance.

Catch rates of these vessels in Div. AVs increased from 1.37 $\mathrm{mt} / \mathrm{df}$ (metric tons per day fished) in 1960 to a peak of $2.08 \mathrm{mt} / \mathrm{df}$ in 1965, declined in 1966 but increased to a peak of $2.36 \mathrm{mt} / \mathrm{df}$, in 1968. Subsequently, catch rates steadily declined to $0.74 \mathrm{mt} / \mathrm{df}$ in 1973 , the lowest catch rate in the 14 year data series (Table 4). In Div. $4 W$, catch rates fluctuated between 1.15 and $1.59 \mathrm{mt} / \mathrm{df}$ in 1960-67, then peaked sharply in 1968 at $2.39 \mathrm{mt} / \mathrm{df}$. Catch rates then declined steadily to a low of $0.68 \mathrm{mt} / \mathrm{df}$ in 1972, with a slight increase to $0.87 \mathrm{mt} / \mathrm{df}$ in 1973.

Interpreting these data in terms of cod abundance, it is apparent that there has been a serious decline in the cod stocks of both Divisions in the early 1970's to levels substantially below those prevailing in the 1960's.

Catch rates were slightly higher in Div. 4 Vs than in Div. 4W from 1960 to 1967, although the Div. 4W catch rate was the higher in four of the subsequent six years. There are similarities in overall trends, particularly in the exceptionally high catch rates in both areas in 1968 and in the sharp declines in the following years.

estimated removals from the stocks

Methodology

Review of Canadian commercial sample age compositions by five year periods, Division, and season (Table 5) revealed substantial differences in age composition between Divisions and seasons and trends with time, catches in Div. 4Vs having a progressively older mean age from 1960-64 to 1970-74, while those from Div. 4W became progressively younger. Examination of Spanish commercial length frequencies for October, 1964, from Div. 4Vs and Div. 4W in the ICNAF Sampling Yearbook indicates that smaller fish were caught by Spain in this season than in February to April for which Spanish samples are available for 196062 and 1964. Soviet samples are available for their commercial catches in 1973 and 1974 indicating that the Soviet fleet takes much smaller and younger cod than either Canadian or Spanish fleets.

Thus, country, Division, and seasonal stratification of the catches are of major importance in weighting by samples to obtain age compositions of removals. Sampling data are inadequate to sustain this degree of stratification. It is, therefore, necessary to make a number of assumptions on the age composition of catches for which sampling is not available.

USSR sampling data for 1973 and 1974 are consistent in indicating that their catch is largely composed of age 2 and age 3 cod. Labelled as commercial catch samples, the catches were taken with 40 mm mesh nets presumably as a bycatch in the silver hake fishery. The larger cod catches by the USSR in the early 1960's are also entered in ICNAF Statistical Bulletins as bycatches to silver hake effort. It is assumed then, that all USSR catches of cod have had a similar age composition to those of 1973-74, and catches in 1961-72 were attributed to age groups on the basis of the average 1973-74 age composition.

Spanish sampling data are available for some months in 1960, 1961, 1962, and 1964. In summary, there are, for Div. 4W, nine samples in the January to June season, and nine in the July to December season. For Div. 4Vs, there are seven samples in January-June, and two in JulyDecember. These samples, combined as just described, were applied to Spanish catch data for 1958 to 1967 (except for 1962 for which sufficient data were available not to require the use of samples from other years).

Spanish samples are also available for 1971, 1973, and 1974. These are all from the January to June period, and of 16 samples, only one is from Div. 4W. These samples were applied to Spanish catches in January-June of the respective years in which they were collected. For 1972, the average of 1971 and 1973 samples was applied to catches. For 1968-70, the January-June catches were weighted by all 16 of the 1971-74 samples combined. In 1968-74, no samples were available for the July to December period, and Spanish catches were weighted by Canadian samples from the appropriate season and year.

Canadian sampling data is also sparse but distributed fairly evenly among years, Divisions, and seasons. Canadian Div. 4Vs catches are almost entirely taken by otter trawl but insufficient sampling data are available to weight catches by season. Thus, all Div. $4 V s$ catches
in a particular year were weighted by all the samples for Div. 4Vs in that year (except 1958, 1959, and 1971 when seasonal weighting was possible). Available samples ranged from one to ten. In two years, 1961 and 1969, when no samples were available, the averages of adjacent years were used.

Canadian catches in Div. 4W were predominantly by otter trawl between 1960 and 1968 but other, primarily inshore gears, were catching approximately $5,000 \mathrm{mt}$ of cod annually during this period. Since 1968, gears other than otter trawls have taken the larger share of the catch and by 1974 only 22% of the Canadian Div. 4 W catch was taken by otter trawlers (Table 6).

Almost all available sampling data are from otter trawl catches and it has been necessary to assume that catches of other gears had similar age compositions (in all years except 1974 when longline and handline samples were available). The degree of error introduced by this assumption can be judged from the comparisons in Table 7.

A seasonal breakdown was possible for Canadian Div. 4W catches, sampling gaps in the July-December period in 1961, 1964, and 1970 being filled by averaging samples from adjacent years for the same season.

The small catches of other countries are assumed to have had the same age composition as those of Canada. USSR samples are of length frequencies only. The season of capture was similar to that of Canadian research vessel survey operations. Thus Canadian survey age length keys for the appropriate years were used to obtain age compositions for USSR catches.

Spanish samples include age data but discrepancies between Spanish and Canadian ageing for cod in this area are substantial (LopezVeiga et al., MS 1975). For consistency, Canadian ageing data were used throughout, the appropriate Canadian age length-key for a particular Division, year and season being applied to Spanish length frequency data.

Results

Assuming USSR catches have been consistently of 2 and 3 year old fish, removals by the USSR were about 23×10^{6} fish in 1963, declining in the late 1960's but increasing to about 11×10^{6} in 1971 and 1972, then declining to about 6.8×10^{6} in 1974 .

Removals by Spain increased from 7.6×10^{6} fish in 1958 to 25.7×10^{6} by 1963 , fluctuating around this level until 1968 when they increased to 38.8×10^{6}. Removals have since declined to a low of $19.3 \times$ 10^{6} by 1974.

Canadian removals fluctuated between 8×10^{6} and 10×10^{6} fish in 1958-64, increasing to 15×10^{6} in 1965. Subsequently, they varied between 6.8×10^{6} and 13.6×10^{6} fish, the lowest number being removed in 1974.

Total removals increased from 19.5×10^{6} in 1958 to 57.1×10^{6} in 1963 , declining until 1968 when removals peaked at 64.2×10^{6}. They remained over 40×10^{6} until 1974 when 34.5×10^{6} fish were removed (Table 8).

RESEARCH VESSEL SURVEYS

Canada has conducted stratifjed-random groundfish surveys in Div. 4VsW since 1970. Estimates of population numbers at age from these surveys are very variable (Table 9). Relative year class strengths appear more stable than absolute abundance estimates, the 1966 and 1968 year classes consistently showing up as being stronger than those adjacent to them. It is possible that either the 1971 or 1972 year class is stronger than adjacent year classes.

It appears from Table 8 that cod of age 6 , and in most recent years age 5, are fully recruited to the fishery. Estimates of F from survey data for fully recruited age groups are very variable. The average F for the period $1970-74$ is estimated to be about $F=0.60$ (Table 9).

FISHING MORTALITY FROM COHORT ANALYSIS

Using the data from Table 8, several trial runs of cohort analysis were performed using different assumtpions for F in 1974. It became apparent that F in 1972 and 1973 was high. Thus, a value of $F=0.60$ was chosen for fully recruited age groups in 1974, being the value obtained from research vessel surveys and a likely conservative estimate of 1974 mortality. The selection pattern at age in 1974 was taken as the average selection pattern in 1972 and 1973. The values used were:

Age	1	2	3	4	$5+$
Percentage selection	1	12	30	51	100

giving the results shown in Table 10. The population number at age estimates also obtained from this calculation are given in Table 11.
F on ages 4 and older (weighted by population numbers at age) increased from $F=0.23$ in 1958 to $F=0.50$ by 1965. A further peak in F occurred in $1968(F=0.57)$. Lower values in 1969 to 1971 were followed by high F^{\prime} 's of $F=0.60$ in 1972 and $F=0.67$ in 1973.
F on ages greater than age 4 were considerably higher than these means. F of 3 year olds ranged from $F=0.04$ to $F=0.25$. F of 2 year olds was negligible until 1963 when it reached $F=0.16$, was low in the mid-1960's, increasing again in 1971 and 1972 to $\mathrm{F}=0.12$.

POPULATION SIZE FROM COHORT ANALYSIS

Population estimates of age $1+$ cod increase from 359×10^{6} fish in 1958 to 425×10^{6} fish in 1966, then decline steadily to $280 \times$ 10^{6} by 1974 (Table 11). Estimates for cod age 4 and older increase from 95×10^{6} in 1958 to 132×10^{6} in 1961. This is followed by a decline through $1965\left(99 \times 10^{6}\right)$ and then a second increase to 128×10^{6} by 1970. Subsequent to 1970 a substantial decline occurs to 68×10^{6} by 1974.

The data imply that there was a six year period, 1962-67, when the strength of year classes at one year old (i.e., the 1961-66 year classes) was over 100×10^{6} fish. The average strength was 125×10^{6} and the strongest year class was 146.5×10^{6}, that of 1965 . The subsequent five year classes, those of 1967 to 1971, were all poorer, averaging 84×10^{6} fish.

Comparing estimated changes in population from cohort analysis with changes in abundance estimated from Spanish catch per effort data (Table 4), there are apparent inconsistencies. The high catch rates in 1968 should be reflected by a substantial increase in population estimates of fish age 3 and older. While some increase is shown in the population estimates, the increased catches of 1968 are reflected to a large extent as an increase in mortality (Table 10).

It is apparent that the demands placed on the sampling data were too great, and it has not been possible to obtain sufficient resolution to allow detailed interpretation of historical events. It is likely that an extremely strong year class entered the Spanish fishery in 1968, most likely that of 1965 . This is substantiated by the fact that the Canadian fishery, which was based largely on age 4 and 5 fish, did not show an increase in catch rates (Halliday, 1972). In the cohort analysis, the strength of this year class has been spread over a number of adjacent year classes.

It is likely, then, that there has been considerably more fluctuation in year class strength than suggested by this analysis.

In the 1970 to 1974 period sampling coverage was substantially improved over that of the 1960's. It is encouraging that, in this period, Spanish catch rates and cohort analysis are in agreement, but unfortunate that they both indicate that there has been a substantial decline in population abundance.

AGE AT RECRUITMENT

The selection at age estimated from the fishing mortalities calculated by cohort analysis for 1972 and 1973 are given above. Due to the quite different selection patterns of the major fishery components, these data give an asymmetrical selection ogive. The mean selection age was estimated graphically by equalisation of the areas under the lower and above the upper parts of the curve (e.g., Gulland, 1969) giving a mean selection age of 3.5 yrs. Similar calculations for the period 1969 to 1971 gave a value of 3.95 yrs.

DISCUSSION

Both Spanish commercial catch rates and cohort analysis indicate that there has been a substantial decline in stock abundance in the 1970's. There also appears to have been a decrease in average recruitment during this period.

The mean age at recruitment decreased between 1969-71 and 1972-73 from almost 4.0 yrs to 3.5 yrs, F associated with maximum yield per recruit at a mean selection age of 3.5 yrs is $\mathrm{F}_{\max }=0.34$ for Div. 4 Vs and $F_{\max }=0.30$ for Div. 4 W . This contrasts with the calculated mortality on fully recruited age groups (age $5+$) in 1972-73 of $F=0.80$. The 1969-71 mean selection age of 4.0 yrs is associated with $F_{\max }=0.40$ for Div. 4 Vs , and $F_{\text {max }}=0.36$ for Div. $4 W$ while the average F in 196971 was 0.55 (ages $6+$). Thus, the stocks have been exploited at levels above $F_{\max }$ for at least the last six years. With the 1972-73 selection pattern, a reduction in effort of approximately 60% is required to reduce mortality to $\mathrm{F}_{\text {max }}$. A long-term increase in yield per recruit of approximately 10% could beaxnticipated. A reduction in the number of small fish caught, if this increased the mean selection age from 3.5 yrs to 4.5 yrs could increase yield per recruit by a further 10% and require a less severe reduction in effort.

It has not, as yet, proved possible to utilise research vessel survey data to predict likely recruitment success. It appears from cohort analysis, for which the most recent years are likely to be moderately reliable, that recent recruitment has ranged from about 73×10^{6} to 100×10^{6} fish at age 1 (Table 11). It is assumed in Table 11 that the 1972 and 1973 year classes are also of that order of magnitude (85×10^{6} fish). The less reliable long-term (1957-72 year class) average from cohort analysis is 108×10^{6} fish.

Catch projections were performed using the 1972-73 selection at age and the following mean weights at age which are those observed in 1974 catches:

Age	$\underline{\bar{W}}(\mathrm{~kg})$	Age	$\underline{W}(\mathrm{~kg})$	Age	$\underline{W}(\mathrm{~kg})$
1	0.14	5	1.61	9	4.06
2	0.31	6	2.11	10	4.71
3	0.70	7	2.70	11	5.25
4	1.08	8	3.60	12	5.55

Yield from Div. 4VsW has, on average over the last 17 years, come almost equally from the two Divisions. Research surveys over the last five years also indicate that, on average, the biomass of cod in Div. 4Vs and Div. 4W is similar. Thus, an unweighted average of $F_{\text {max }}$ for the two Divisions is taken as a management objective. This implimax $F_{\max }=0.32$
for the selection pattern of 1972-73 and $F_{\max }=0.38$ for that of 1969-71. A value of $F_{\text {max }}=0.35$ is chosen as representative of average conditions over the lastax ${ }^{\text {mix }}$ years, and is used as 1976 management objective, assuming that objective is to maximise yield per recruit.

An alternative objective is to set F at some value less than $F_{\text {max }}$ resulting in some loss of yield but also reductions in the cost of fishing. Thus, the implications of setting F at $F_{0.1}$ which in this case is about $F=0.20$ is also investigated.

The 1975 TAC for Div. 4 VsW cod is $60,000 \mathrm{mt}$. If the stength of 1972 and subsequent year class are similar to the recent average of 85×10^{6} at age 1 , the 1975 TAC will generate an $F=0.80$ (Table 12). If these year classes approximate the long-term average of $103 \times 10^{6}, 1975 \mathrm{~F}=0.75$. The implications for 1976 of these two recruitment assumptions are summerised in Table 12. For the lower, fishing at $F_{\text {max }}$ in 1976 would yield $28,000 \mathrm{mt}$, for the higher, $31,000 \mathrm{mt}$. The long-term catches fishing at $F_{\max }$ are $51,000 \mathrm{mt}$ and $62,000 \mathrm{mt}$ depending on recruitment assumptions. If the management decision is taken to reduce fishing to $F_{0.1}$ in 1976, the appropriate catch is $17,000-19,000 \mathrm{mt}$. The long-term effects of fishing at $F_{0.1}$ are to reduce potential yields by 10%, but the effort required to harvest this lesser yield is approximately 40% less than required to fish at $\mathrm{F}_{\text {max }}$.

REFERENCES

Gulland, J. A. 1969. Manual of methods for fish stock assessment. Part 1. Fish population analysis. FAO Manuals in Fisheries Science No. 4. (FRs/M4), Rome.

Halliday, R. G. 1972. A yield assessment of the eastern Scotian Shelf cod stock complex. ICNAF Res. Bull, No. 9: 117-124.

Hodder, V. M. MS1972. Catch statistics for the years 1958-70 summarised in relation to certain 1972 proposals for quota regulation of cod stocks in Subareas 2, 3, 4 and 5. ICNAF Res. Doc. 72/57 (Serial No. 2773).

Lopez-Veiga, E. C., R. G. Halliday and R. Wells, MS1975. Results of the Canada-Spain cod otolith exchange. ICNAF Res. Doc. 75/73, (Serial No. 3557).

Table 1. Div. 4Vs-W cod. Mean length (cm) at age in Canadian commercial samples. Parentheses indicate representation in catch is less than 1%.

4Vs Jan.-June
AGE

Period								
	3	4	5	6	7	8	9	10
1960-64	(46.0)	47.0	53.3	56.7	63.6	62.3	63.2	(74.7)
1965-69	37.5	45.7	52.1	55.9	61.1	60.2	63.4	66.1
1970-74	(42.2)	44.2	50.7	55.9	61.5	65.0	72.6	75.9
	(41.9)	45.6	52.0	56.2	62.1	62.5	66.4	(72.2)

4Vs July-Dec.

$1960-64$	40.6	48.3	52.6	63.4	72.7	71.3	81.3	(94.0)
$1965-69$	39.3	46.9	52.1	57.3	67.0	(73.4)	(85.0)	-
$1970-74$	43.8	47.4	53.9	62.1	63.1	75.6	82.2	88.9
	41.2	47.5	52.9	60.9	67.6	73.4	(82.8)	(91.5)

4W Jan.-June

$1960-64$	(47.1)	49.8	55.7	60.6	65.1	69.0	76.2	87.7
$1965-69$	42.8	48.9	54.7	60.4	67.0	74.2	79.8	86.5
$1970-74$	39.0	45.6	51.6	57.5	63.4	64.8	67.7	77.4
	(43.0)	48.1	54.0	59.5	65.2	69.3	74.6	83.9

4W July-Dec.

| $1960-64$ | 46.4 | 49.5 | 54.6 | 62.9 | 69.5 | $74.6(87.3)$ | (81.4) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $1965-69$ | 45.0 | 50.6 | 56.9 | 64.1 | 75.9 | $(82.5)(86.0)$ | (73.2) |
| $1970-74$ | 45.8 | 51.3 | 57.2 | 59.4 | 63.8 | $64.0(92.8)$ | (77.6) |
| | 45.7 | 50.5 | 56.2 | 62.1 | 69.7 | $(73.7)(88.7)$ | (77.4) |

Table 2. $\quad 4 V \operatorname{si}$ cod. Research vessel survey mean length (cm) at age. Parentheses indicate representation in catch is less than 1%.

Div.	AGE									
	Year	1	2	3	4	5	6	7	8	9
4Vs	1970	(16.8)	26.2	40.3	48.3	53.5	58.6	64.3	(65.0)	- ${ }^{-}$
	1971	(16.8)	28.6	36.3	44.1	52.1	57.0	56.6	62.9	(70.0)
	1972	(22.9)	31.8	41.9	44.8	53.0	57.1	57.0	(63.3)	(91.0)
	1973	21.6	31.5	41.2	47.9	55.9				
	1974	21.1	31.1	38.4	47.0	53.1	58.8	(62.6)	67.5	(67.0)
	1970-4 ave.	21.4	29.8	39.6	46.4	53.5	57.9	59.3	65.2	-
4W	1970	20.6	35.7	45.7	51.7	59.3	69.4	77.8	(77.0)	(79.0)
	1971	16.7	24.6	38.7	51.2	56.1	59.9	67.1	67.8	74.9
	1972	19.7	31.3	43.2	55.0	59.7	65.9	(82.0)	(79.0)	(98.0)
	1973	21.6	29.5	38.9	48.0	52.1	(61.1)	(60.2)	(88.0)	-
	1974	20.3	32.2	38.6	47.5	54.5	(62.5)	(70.5)	(61.9)	(62.6)
	1970-4 ave.	19.8	30.7	41.0	50.7	56.3	65.1	72.5	67.8	74.9

Table 3. Div. 4Vs-W Cod - Nominal Catches (m.t.)

Table 4. Div. 4VsW cod. Catch rates (metric tons per hour fished) of Spanish 151-500 gross ton pair trawlers in the February to April period, 1960-73.

Year	Div. 4 Vs	Div. 4 W
1960	1.37	
61	1.53	1.22
62	1.45	1.51
63	1.72	1.44
64	2.77	1.32
1965	1.70	1.15
66	1.83	1.59
67	2.36	2.51
68	1.60	1.89
69	1.18	1.45
1970	0.74	1.32
71		0.68
72		

Table 5. Div. 4VsW cod. Percentage age compositions in Canadian commercial samples.

4Vs Jan. - June

	Mean age	2	3	4	5	6	7	8	9	10	11	$12+$
$1960-64$	5.7	-	0.9	25.6	23.5	22.8	11.0	11.7	2.9	0.8	0.4	0.5
$1965-69$	5.7	0.1	4.0	23.5	30.1	17.8	9.2	6.6	3.9	2.8	1.3	0.8
$1970-74$	6.3	-	0.5	12.4	27.6	24.1	13.9	12.9	3.8	2.2	1.1	1.8

4Vs July-Dec.

$1960-64$	4.8	1.1	12.0	32.9	39.1	4.7	2.2	5.9	1.3	0.3	0.3	0.3
$1965-69$	5.0	-	1.8	25.2	52.4	17.9	1.7	0.7	0.3	-	-	-
$1970-74$	5.7	-	12.5	13.6	29.5	15.6	14.2	7.0	3.0	2.8	0.6	1.1

4W Jan.-June

$1960-64$	6.4	-	0.4	7.5	25.7	25.0	18.7	13.5	5.6	1.4	1.0	1.1
$1965-69$	5.9	-	2.5	18.6	27.2	26.5	10.8	6.2	3.9	1.9	1.3	1.3
$1970-74$	5.8	-	2.1	18.6	34.7	15.4	11.9	9.6	4.6	1.3	1.6	0.3

4W July-Dec.

$1960-64$	4.7	-	13.7	37.8	26.8	12.5	5.9	2.3	0.4	0.4	0.1	0.1
$1965-69$	4.5	0.2	16.1	42.8	26.5	9.9	2.3	1.0	0.5	0.7	0.1	0.1
$1970-74$	3.8	10.6	35.2	33.0	10.8	6.0	2.8	1.4	+	0.2	-	+

Table 6. Div. 4Vs-W cod. Canadian nominal catches by otter trawls and other gears.

Year	Div. 4 Vs		Div. 4K	
	Trawls	Other gear	Trawls	Other gear
1958	4258	2092	4892	5731
59	4181	1286	7294	7308
1960	1924	750	10228	5488
61	1135	136	12895	5531
62	1495	93	11762	4229
63	1258	34	7779	4063
64	2059	41	7324	4906
1965	7366	106	10293	5338
66	6375	156	6614	4545
67	6729	132	6463	5140
68	9501	66	8367	6954
69	3539	51	4424	6174
1970	3054	22	3596	5146
71	5826	41	4745	6452
72	9856	119	4732	5280
73	6397	77	4723	4731
1974	4640	60	1343	4658

$$
\begin{aligned}
& \text { Season } \\
& \text { Jan.-June } \\
& \text { July-Dec. }
\end{aligned}
$$

¢	on	サ +	$\infty \infty$	-	
	\% ${ }_{6}^{6}$	¢09	O\%	¢0\%	

VIncludes handine sample

ㄴ. N NON

Table 9. Div. 4Vs $-\mathbf{W}$ cod - survey population estimates (nos. at age $\times 10^{-3}$ and mortality of fully recruited age groups

Age	1970	1971		$\underline{1972}$		1973		1974
1	1,480	1,539		6,210		16,128		6,084
2	16,388	7,680		9,657		122,779		32,961
3	5,250	35,664		9,635		104,965		19,246
4	7,669	8,027		33,848		59,948		5,623
5	3,735	15,803		5,571		22,524		2,017
6	1,217	5,771		6,111		1,870		2,244
7	1,502	3,459		1,688		2,907		372
8	462	1,475		547		901		563
9	104	638		495		431		224
10+	711	471		153		910		340
Totals	38,518	80,531		73,915		333,363		69,574
$\begin{aligned} & \bar{F}= \\ & 5+ \end{aligned}$	-0.62		0.92		0.53		1.67	Mean $=0.63$
$\begin{aligned} & \bar{F}= \\ & 6+ \end{aligned}$	-0.61		1.21		0.37		1.41	Mean $=0.60$

$\stackrel{m}{n}$	

N	
	－000000000へ

$\stackrel{\text { d }}{\sim}$	$\stackrel{\circ}{\mathrm{O}}$.00000000000
$\stackrel{\pi}{\pi}$	\％	
N	$\stackrel{\square}{-1}$	－0．0000000000
吴	$\stackrel{\circ}{\circ}$	

$\stackrel{\rightharpoonup}{\circ}$	
	－00000000－0

	$\dot{0} 00^{\circ 0} 00^{\circ 0}$

$\stackrel{+}{0}$		\％
	－00000000000	0

$\stackrel{\substack{\circ}}{\square}$	
	－000000000000

$\stackrel{\sim}{0} \mid$	タNNNNNㅇNํํํ $0^{\circ 00} 0^{\circ 0}-0.00^{\circ}$
$\bar{\circ}$	N

앙	NヘM
\bigcirc	－00000000

∞	
－	－0000000．

Table 12. Div. 4VsW cod. Implications of management options for 1976.

Recruitment 1972 and subsequent Year classes	1975 F	1976 F	1976 catch(mt)	Long-term catch(mt)
85×10^{6}	0.80	0.35	28,000	51,000
103×10^{6}	0.75	0.35	31,000	62,000
	0.20	19,000	56,000	

Fig. 1. Div. 4VsW cod. Mean length at age of Div. 4Vs and Div. 4W cod from Canadian research vessel surveys and Canadian commercial samples.

Fig. 2. Div. 4VsW cod. Yield per recruit isopleth diagrams for Div. $4 V$ s and Div. $4 W$ cod. $F=$ instantaneous fishing mortality, $t_{\rho}{ }^{\prime}=$ age at recruitment to the exploited stock, numbers in body of graph ire yields per recruit in kg .

