International Commission for

ICNAF Res.DOC. 75/15

ANNUAL MEETING - JUNE 1975
Relative abundance of Atlantic mackerel off the northeastern coast of the United States
by
E. D. Anderson

National Marine Fisheries Service
Northeast Fisheries Center
Woods Hole, Massachusetts 02543

Abstract

The historical mackerel fishery off the northeastern US coast (ICNAF Subarea 5 and Statistical Area 6) from 1804 to 1973 was reviewed. A US commercial fishery standardized catch per effort index for 1964-1973, a distant water fleet standardized catch per effort index for 1968-1973, and US spring (1968-1974) and autumn (1963-1974) research vessel survey abundance indices were presented to describe recent changes in mackerel stock abundance. Results of analyses on the catch per effort data from the distant water fleet vessel classes suggested that both learning and technological improvements occurred in those fleets during the recent expansion of the mackerel fishery. The recent development of the fishery was characterized by a large increase in fishing effort and catch and a marked decline in stock abundance which was documented by four separate measures of catch per effort. It is not likely that the stock can support increases in catch without further increases in fishing mortality and a decrease in size until more abundant year-classes are recruited.

Introduction

The international commercial catch of Atlantic mackerel (Scomber scombrus) off the northeastern coast of the United States (ICNAF Subarea 5 and Statistical Area 6) (Figure 1) increased from 1,049 metric tons (MT) in 1962 to 387,364 MT in 1972. The mackerel fishery was confined to small catches by US vessels just prior to the arrival of distant water fleets in the early 1960's, but a heavy fishery had been conducted during most of the 1800 's with a maximum catch of $81,300 \mathrm{MT}$ in 1884 (Sette and Needler, 1934). Intensive fisheries were begun by the USSR in 1967, Poland in 1968, and the German Democratic Republic (GDR) and Bulgaria in 1971. A total of 12 different nations reported mackerel landings in 1972-1973. The population has contained two strong year-classes, 1967 and 1966 , which provided a major portion of the recent increased landings (ICNAF, 1974). Total allowable catches with national allocations were established by ICNAF for mackerel in SA 5-6 at 450,000 MT for 1973, 304,000 MT for 1974, and 285,000 MT for 1975. This paper describes recent changes in stock abundance based on various independent measures of catch-per-unit-effort and draws inferences about future potential yields.

Historical fishery

Atlantic mackerel have been harvested off the northeastern US shores since the 1600 's. Landings from 1804 (the first year statistics were available) to 1965 underwent considerable fluctuation (Hoy and Clark, 1967) in response to the interaction of a number of factors including changing economic conditions, improvement in fishing methods, shifting of the fishery from one region to another, and natural fluctuations in abundance (Sette and Needler, 1934) (Figure 2). During the period 1804-1818 catches were low averaging only 3,100 MT due to the fishery being restricted to coastal areas. Catches then increased sharply as a result of the expansion of the fishery to offshore waters and the development of a large salt mackerel industry. From 1819 to 1885 catchss averaged 41,700 MT but fluctuated widely from 10,500 MT in 1840 to $81,300 \mathrm{MT}$ in 1884. Fishing methods during the latter part of this period changed from the traditional hook and line to purse seines. Catches declined during 1886-1924 and averaged only 9,300 MT. During this time vessels switched from sail to motor power and a fresh mackerel market developed. Catches increased again to average 23,500 MT per year in 1925-1949, but dropped during 1950-1964 to average only $1,500 \mathrm{MT}$. International landings after 1964 virtually doubled each year (114\% average annual increase)

Landings by the USSR exceeded those of any other nation from 1965 to 1971 (Table 1) but decreased from 79% of the total in 1967 to 37% in 1971. Poland reported the largest catch in' 1972 ($141,999 \mathrm{MT}$) while the USSR, GDR, and Bulgaria landed $134,057,80,537$, and $23,556 \mathrm{MT}$, respectively. The USSR catch increased to $145,796 \mathrm{MT}$ in 1973 while Polish landings decreased to $117,254 \mathrm{MT}$. GDR and Bulgaria landed 76,758 and $31,743 \mathrm{MT}$, respectively, in 1973 with six other nations contributing the remaining 9,613 MT.

Subarea 5 provided 52-89\% of the total landings from the combined area during 1961-1970. Statistical Area 6 produced 67% in 1971, whereas landings in 1972 were nearly the same from the two areas (SA 5 - 52\%, SA 6 - 48\%). However, Subarea 5 landingstincreased to 83% of the total in 1973.

US commercial landings of mackerel increased each year from 938 MT in 1962 to $4,364 \mathrm{MT}$ in 1969 and then declined each year thereafter to only 1,336 MT in 1973. A substantial US sport fishery for mackerel exists from Maine to North Carolina. Since yearly sport fishery catches are not known, they are not included in the US landings shown in Table 1. Angler surveys conducted at 5 -year intervals beginning in 1960 estimated the 1960, 1965, and 1970 mackerel catch to be 4,957, 8,583, and 32,078 MT, respectively (Clark, 1962; Deuel and Clark, 1968; Deuel, 1973). The 1970 sport catch constituted 13\% of that year's total landings from the stock $(32,078+209,622 \mathrm{MT})$. Even though current assessment studies have not included the ever-increasing sport fishery catches, it would appear that their magnitude necessitates such in future analyses.

US commercial fishery abundance index

Data

Catch and effort statistics from a variety of gear types fished by uS vessels landing in New England ports during 1964-1973 were used to calculate annual standardized catch per effort. The catch-per-unit-effort is limited as an index of population size because the US fishery is conducted only in inshore waters whereas the bulk of the international catch is taken by distant water fleets which operate farther offshore. Furthermore, the landings used in the analysis varied from 46.1% of the international total at the start to only 0.1% in the latest years (Table 2). Catch and effort statistics from only those individual vessel trips in which mackerel landings comprised 50% or more of the total were included in the analysis. The effort unit used was a day fished. The proportion of the total US landings taken by such trips ranged from 15.3% in 1972 to 63.7% in 1964 (Table 2) and averaged 38.6% annually for the 10-year period.

Standardization of fishing effort

Types of gear used in the US fishery to catch mackerel included hand line, otter trawl, floating trap, sink gill net, drift gill net, purse seine, pound net, and midwater pair trawl. Pound nets, floating traps, and purse seines have accounted for the largest amount landed. Total annual fishing effort by all the various types of gear was standardized by the use of effort standardization coefficients which were computed using a two-factor analysis of variance procedure proposed by Robson (1966) fmethod summarized by Brown et al. (1975) 7. The two factors used in the analysis of variance were gear type and vessel tonnage class. Gear types included the eight listed earlier and tonnage classes included 0-50, 51-150, and 151-630 gross tons. A separate analysis was performed for each year with data from a single trip constituting one observation. Effort standardization coefficients were computed for each gear-tonnage class in relation to a standard gear-tonnage class. The floating trap, 0-50 ton class was selected as the standard because it (1) contained observations in all years (Table 3), (2) contained a larger number of observations in all years than other categories also meeting the first criterion (Table 3), and (3) provided greater landings than other categories satisfying the previous criteria (Table 2).

Results

The analysis of variance indicated that gear differences in each of the ten years and tonnage class differences in six of the years were significant at the 0.05 probability level. A significant geartonnage class interaction was apparent in only one year and the interaction term was ignored in the analysis.

Effort standardization coefficients are given in Table 3. Coefficients were greatest for purse seines followed by midwater pair trawls, otter trawls, pound nets, floating traps, drift gill nets, and hand lines. Values for individual gear types increased with tonnage class. Coefficients for some categories were generally consistent over years whereas others exhibited considerable variation. Some of the larger deviations were associated with a small number of trips producing small landings.

Landings per standardized US day fished was determined for each year by multiplying the days fished used in the analysis for each gear-tonnage class category by the appropriate effort standardization coefficient and dividing the sum of the products into the summed annual uS landings used in the analysis. Total international effort expressed as standardized uS days fished was calculated by dividing the total international landings by the landings per standardized US day. Results are given in Table 10 and Figure 3.

Landings per standardized US day increased each year from 0.43 MT in 1964 to 2.80 MT in 1968. The index dropped to 1.92 MT in 1969, increased ta 2.07 MT in 1970 and then declined steadily to 0.53 MT in 1973. Total international effort expressed as standardized US days fished increased exponentially from 5,281 days in 1964 to 719,177 days in 1973 at an average annual rate of 80%.

US research vessel survey abundance index

US ALBATROSS IV autumn and spring bottom trawl surveys (Grosslein, 1969) have been used to monitor fluctuations and trends in the relative abundance of demersal fish stocks as well as some semi-pelagic and pelagic stocks beginning in 1963 on Georges Bank and 1968 in SA 6. Data from the spring (March-Apri1) surveys have provided evidence of the changes in population size of sea herring (clupea harengus) (Schumacher and Anthony, 1972) which agrees well with other estimates based on fishery statistics. Spring surveys have produced greater mackerel catches than autumn (September-December) surveys since during the spring the fish occur in dense pre-spawning and spawning concentrations between Georges Bank and Cape Hatteras. The autumn catch per tow, in addition to being substantially less than that in the spring, also exhibits relatively greater statistical variance (Table 4). However, the autumn survey is of value in spite of these factors because it constitutes a longer series of observations (1963-1974) than the spring survey (1968-1974) and has depicted noticeable trends in abundance over the 12-year period (Figure 5).

The spring index was calculated from catches in sampling strata 1-14, 61-76 (Figure 4) and the autumn index from strata 1-2, 5-6, 9-10, 13, 16, 19-21, 23, 25-26. These strata sets comprise the areas where mackerel have consistently been caught during past surveys. The spring set includes all strata from the southwest part of Georges Bank to Cape Hatteras and the auturn set includes all strata 60 fathoms and less from Hudson Canyon to east of Cape Cod including Georges Bank.

The 1973 and 1974 spring surveys employed a modified Yankee No. 41 high-opening bottom trawl in place of the previously used Yankee No. 36 trawl. In order to maintain continuity with the 1968-1972 catch per tow series, the 1973 and 1974 station catches were adjusted to equivalent No. 36 catches utilizing a catch ratio of $\mathbf{3 . 2 5 : 1}$ between the No. 41 and No. 36 trawls (unpublished NMFS data).

Survey catches of mackerel have generally been highly variable due to the distributional characteristics of mackerel. During the $1968-1974$ spring surveys, mackerel in amounts of 0.45 kg per tow or more were taken on the average in 23.6% of the tows in each survey in strata 1-14, 61-76 in which the average catch per tow was 11.8 kg (does not include an unusually large $5,176 \mathrm{~kg}$ catch in 1973). Daylight tows accounted for slightly more than half the total (55.4\%) each spring, and on the average 26.8% of those tows yielded mackerel, whereas 19.5% of the tows during hours of darkness caught mackerel. For those tows producing mackerel, the kg per tow ratio between daylight and darkness averaged 4:1 over the 7-year period. The spring stratified mean catch per tow (in weight) exhibited a large standard deviation (Table 4) with coefficients of variation ranging from 31.1 to 95.7 and averaging 54.7 . A $\log _{\text {e }}(x+1)$ transformation, where x is the individual tow catch, was used to normalize the distribution of individual catches which reduced the standard deviation of the mean to give coefficients of variation averaging 24.8\%. Changes in stock abundance from year to year which are represented as ratios in mean catch per tow on a linear scale are expressed as differences on the $\log _{e}$ scale.

The spring abundance index ($\log _{e}$ scale) decreased from a high of 0.73 in 1968 to 0.25 in 1973 (Table 4, Figure 5). The extremely low value of 0.03 in 1969 is probably not indicative of actual abundance but rather that the mackerel were outside the survey area. Nearly all of the mackerel were caught during that survey in stratum 62 (Figure 4) off Cape Hatteras indicating that the inshore, northerly migration had just begun. Water temperatures did not appear to differ from those in adjacent years. Spring indices for other pelagic species (e.g. sea herring) did not exhibit a similar drop in 1969 suggesting that the survey trawl and operation functioned normally. The high 1968 value resulted primarily from age 1 fish (1967 year-class) which comprised $80-90 \%$ of the total survey catch. The index decreased from 0.42 in 1972 to 0.25 in 1973, a 17% decline in terms of weight per tow, but increased 6% to 0.31 in 1974. The overall decline from 1968 to 1974 , in terms of weight per tow, was 42\%.

The autumn $\log _{e}$ index improved from <0.01 in 1964 to 0.32 in 1967 and then underwent a decline to 0.11 in 1970. Following a slight decrease to 0.09 in 1971 and a small improvement back to 0.11 in 1972 , the index diminished further to 0.06 in 1973 and remained at that level in 1974. The decrease in weight,
per tow from 1967 to $1973-1974$ was 26%.

Distant water fleet abundance index

Data
Catch and effort statistics reported to ICNAF (FAO STANA 1 W or STATLANT 21B forms) by Bulgaria, GDR, Poland, Romania, and the USSR for 1968-1973 were utilized to calculate annual standardized catch per effort. Otter trawl effort was examined by country, tonnage class (including several vessel classes for some countries), ICNAF division or subdivision, and month and was defined as directed towards mackerel if the mackerel catch reported within these categories exceeded that of any other species. All mackerel landed by Bulgaria, GDR, Poland, and Romania during 1968-1973 were taken entirely by otter trawls, whereas the USSR otter trawl catch averaged 97% during 1968-1972 but dropped to 75% in 1973. The remainder of the USSR mackerel catch was taken by purse seines with a small amount landed by pair trawls in 1970. Hours fished was used as the measure of fishing effort. The proportion of landings used in the analysis to calculate standardized catch per effort varied from 24.2\% of the international total in 1968 to 85.9\% in 1971 (Table 5) and averaged 66.5\% annually for 1968-1973.

Standardization of fishing effort

Total annual fishing effort by the various otter trawler tonnage classes from the five countries was standardized by calculating effort standardization coofficients using the same analysis of variance procedure as cited earlier. Factors considered in the analysis were country and tonnage class as reported to ICNAF: 151-500, 501-900, 901-1800, and >1800 gross tons. A separate analysis was performed for each year. Data were generally available from several vessel classes within each tonnage class (Table 6). Monthly data by vessel class within tonnage class and by ICNAF division or subdivision constituted observations in the analysis of variance.

Effort standardization coefficients were computed for each country-tonnage class in relation to the USSR 151-500 ton class as a standard. This category contained observations in all years and produced the highest proportion of mackerel landings of any class in 1968 ($74 \%-10,690 \mathrm{MT}$), 1969 ($51 \%-28,240 \mathrm{MT}$), and 1970 ($29 \%-48,018 \mathrm{MT}$) (Table 5). Landings were $31,148 \mathrm{MT}$ in 1971 and $31,544 \mathrm{MT}$ in 1972, which amounted to 10% of the total in each year, but dropped to $6,249 \mathrm{MT}$ (28) in 1973 . In 1973 only 356 of the USSR mackerel catch by 151-500 ton vessels (all gears) was taken by otter trawls, whereas during $1968-1972$ otter trawls averaged 97% of the total. The remainder in 1973 was taken by purse seines. The percentage of mackerel in total otter trawl landings by this class rose from 15% in 1968 to 63% in 1970, averaged 53\% in 1971-1972, and declined to 32% in 1973 (Table 7). The percentage of mackerel in total otter trawl landings from directed mackerel effort by this class varied from 49% in 1968 to 80% in 1970 and averaged 68\% per year during 1968-1973 (Table 7). The above data suggest that this class was substantially involved in the mackerel fishery throughout the period and that the catch per effort by this class was a realistic measure of relative stock abundance. Further justification for using this class as the standard is given in the following section relative to the concept of learning.

Adjustment for learning

A directed mackerel fishery by distant water fleets commenced in 1968 in Subarea 5 and Statistical Area 6. The development of this fishery, as with any new fishery, logically required a period of learning by the participants to attain top fishing efficiency and, hence, for catch per effort to become commensurate with stock abundance. The learning process involves acquiring knowledge pertaining to the seasonal and areal distribution of the fish and expertise necessary to effectively catch the fish and is separate from technological improvements made to vessels to iuprove catches. Comparison of annual catch per effort of fishing vessels with an independent measure of stock abundance should define the magnitude and extent of such a learning period. In this paper learning was expressed in terms of increases in annual catch per effort which were independent of actual changes in stock abundance. The learning model used, taken from Brown et al. (1975), was

$$
\boldsymbol{\varepsilon}_{\mathbf{i}}=\frac{\mathrm{X}_{\mathrm{i}}}{\mathrm{Y}_{\mathrm{i}}}
$$

where $\ell_{i}=$ learning achieved by a country-tonnage class in its $i^{\text {th }}$ year in the fishery,
$\chi_{i}=$ observed catch per effort by a country-tonnage class in its i th year in the fishery, and
$Y_{i}^{1}=$ predicted catch per effort by a country-tonnage class in its $i^{\text {th }}$ year in the fishery assuming no learning.
Observed annual catch per effort was determined as the mean of the monthly landings per hour by vessel class within tonnage class by ICNAF division or subdivision (Table 8). Predicted catch per effort was calculated as

$$
r_{i}=\frac{z_{i}}{z_{1}} \times X_{1}
$$

where $1=2,3, \ldots$ and
z_{i}. the independent measure of stock abundance in the $i^{\text {th }}$ year of the fishery. Observed catch per effort in the first year of the fishery was used as the predicted catch per effort. The measure of stock abundance independent of catch per effort was provided by the stock size (MT)of age 1 and older fish as calculated by virtual population analysis by the ad hoc Mackerel Working Group of the Assessment Subcommittee at the 1974 ICNAF Annual Meeting (ICNAF, 1974). The first year in the fishery for each country-tonnage class was considered to be the first year for which there was directed mackerel effort.

Results of the application of the learning model to the distant water fleets are given in Table 8. Learning was assumed to cease if ℓ_{i} decreased from year i to year i+1. Learning for some of the countrytonnage classes decreased in the fourth year (USSR 151-500, GDR 501-900, and Bulgarian and USSR 21800) indicating that learning was completed by the third year in the fishery. The GDR 901-1800 and Romanian >1800 ton classes showed learning to be completed by the second year. The Polish and USSR 501-900 and (in the second year) Pollsh >1800 ton classes were characterized by ℓ_{i} less than $1.0\left(\ell_{1}=1.0\right.$) which would indicate negative or no learning. The most plausible explanation was that either the observed catch per effort in the first year was much higher than would have been expected, catch per effort in the following years was much lower than expected, or chat the original data were poor. Even though the values were less than 1.0, both the Polish and USSR 501-900 ton classes showed an eventual increase in ℓ_{i} in the fifth year. The Polish 901-1800 and GDR and Polish >1800 ton classes generally exhibited a continuous increase in 2_{i} indicating perhaps that technological improvements occurred both during and following the learning period resulting in observed catch per effort increasing in spite of predicted catch per effort decreasing (i.e. decreasing stock abundance). Increases in ℓ_{i} in the fifth and sixth years in the fishery were evident for virtually all of the country-tonnage classes further supporting the belief that widespread improvements occurred in the distant water fleet operations enabling catch per effort to increase despite other evidence which indicates that stock abundance decreased. These improvements may have bew accomplished in various ways such as by the conversion from bottom to more efficient midwater trawls, introduction of larger and/or more efficient nets, implementation of better electronic fish-finding gear, or further acquisition of knowledge relating to locating and capturing fish schools. Such improvements in the fishery are poorly documented although it is known that a conversion from bottom to midwater trawls did occur. GDR catch and effort statistics have been reported to ICNAF by bottom or midwater trawl whereas those from the other four nations have not been separated. GDR data indicated better catch per effort of mackerel with midwater than with bottom trawls. Some observations indicate that the Polish fleet underwent a gradual transition from bottom to midwater trawling and introduced larger and more efficient nets in the last several years. It must be concluded, therefore, that such changes invalidate the usefulness of unadjusted catch per effort by most country-tonnage classes as year to year indicators of mackerel stock abundance.

Close examination of the data for the USSR 151-500 ton class indicates that following an initial 2-year learning period, during which ℓ_{i} increased from 1.00 to $1.33, \ell_{i}$ declined in the fourth and fifth years and then increased slightly in the sixth year. In none of the 5 years following year 1 did ℓ_{i} deviate markedly from 1.0 (mean $=1.12$; range a $0.82-1.33$) demonstrating the close similarity of the observed catch per effort of this fleet with the independent estimate of stock abundance. The learning that did occur in the first two years appears to have been minimal. The lack of a marked decrease in ℓ_{i} after 1970 suggests that technological improvements, evident in most other fleats, were not introduced. USSR 151-500 ton class vessels are generally incapable of satisfactorily employing midwater trawls; hence, conversion from bottom trawls did not occur as in the case of the larger vessels. The increase in observed catch per effort from 0.50 MT per hour in 1972 to 0.58 in 1973, even though stock abundance continued to decline (ICNAF, 1974), coincided with a marked drop in otter trawl-caught mackerel by this vessel class brought about in part by a major shift to purse seines. It is possible that the most efficient otter trawlers were not converted which may have resulted in the increased catch per effort in 1973. In summary, it was concluded that the catch per effort of the USSR 151-500 ton class, following slight adjustment of the first two years in the fishery (1968 and 1969) for learning, typified more closely accepted estimates of stock abundance than any other country-tonnage class.

Since changes in observed catch per effort due to both learning and technological improvements could not easily be quantified for other country-tonnage classes, the observed data for only the standard class were adjusted to compensate for learning. The otject of this adjustment was to bring the fleet used as the standard in its first and second years in the fishery to the same level of knowledge or efficiency as in the third year when its learning was assumed to have been completed. This was accomplished using

$$
f_{i, \text { adj }}=f_{i} \times \frac{\ell_{i}}{\ell_{3}}
$$

where $f_{i, ~ a d j}=$ adjusted hours fished by month and ICNAF area,
f_{i}, original hours fished by month and ICNAF area, and
ℓ_{i} and ℓ_{3} are as defined previously. It was not necessary to adjust the original effort data of the country-tonnage classes for learning and technological improvements because such adjustments were essentially achieved through the effort standardization coefficients. studies. Brown et dil. (1975) suggested that lealning required 2 years in the major distant water fleet
fisheries for all species combined that developed off the northeastern coast of the US in the 1960's. Borkowska-Kwinta (1964, 1970) and Schumacher and Anthony (1972) also proposed that learning requires 2 years for new fisheries.

Results

Analyses of variance were computed for 1968-1973 without effort adjusted for learning and for 19681969 with the effort of the standard USSR 151-500 ton class adjusted for learning. Tonnage class differences were significant at the 0.05 probability level both without and with the learning adjustment in 1969-1973, whereas country differences were significant only in 1971-1973. Significant country-tonnage class interactions occurred in 1971-1973. Detailed examination of the data indicated that the interactions were caused mainly by the GDR 501-900 and 901-1800 ton classes in 1972 and the GDR 501-900 ton class in 1973. Since those classes contributed only a small amount to the catch and effort used in the 1972-1973 analyses (average of 0.7% of the catch and 1.4% of the effort), the interaction was ignored. The interaction F value for the 1971 analysis, although significant at the 0.05 level, was only 108 and 21% of the magnitude of the tonnage class and country F values, respectively, and therefore was assumed less important and ignored.

Effort standardization coefficients are given in Table 9. The coefficients increased with vessel size and showed a definite increase over time especially with the $901-1800$ and >1800 ton classes. The 1968-1973 mean value over all countries obtained without learning adjustments increased from the standard of 1.00 to 1.43 for the $501-900$ ton class to 5.28 for the $901-1800$ ton class (only GDR and Poland) and to 5.85 for the >1800 ton class (GDR and Poland only; 4.83 for all countries). GDR, Poland and USSR had vessels in three different classes, with GDR having the highest mean coefficients, whereas Bulgaria and Romania had vessels only in the >1800 ton class. GDR increased from a mean of 1.59 for the 501-900 ton class to 5.33 for the $901-1800$ ton class to 6.84 for the >1800 ton class; Poland increased from 1.57 for the 501-900 ton class to 5.25 for the $901-1800$ ton class but decreased to 5.02 for the >1800 ton class. In three of the six years, the coefficient was greater for the Polish >1800 ton class than the $901-1800$ ton class, but the lower overall mean resulted from a lower value in 1968 and two low values in 1969-1970 when there were no 901-1800 ton class coefficients. USSR increased from 1.00 for the 151-500 ton class to 1.06 for the $501-900$ ton class to 3.32 for the >1800 ton class. The country means in the >1800 ton class were 6.84 for GDR, 5.02 for Poland, 3.94 for Bulgaria, 3.32 for USSR, and 2.14 for Romania.

The 501-900 ton class vessels, on the average, showed no definite increase in coefficients over years but varied from 1.12 to 1.66 with a mean of 1.43 (Table 9, Figure 6). GDR increased from 0.90 in 1968 to 2.71 in 1971, decreased to 1.55 in 1972, and then increased to 2.22 in 1973. Poland decreased from 2.29 in 1968 to 1.21 in 1970 and then increased to 1.73 in 1973. USSR declined from 1.40 in 1969 to 0.90 in 1971 and then improved to 1.02 in 1973.

The 901-1800 and >1800 ton classes generally exhibited an increasing trend in coefficients over years. In the 901-1800 ton class, Poland improved from 3.67 in 1968 to 4.00 in 1971 to 6.01 in 1972 and to 7.33 in 1973. GDR had values only for 3 years which changed from 2.01 in 1970 to 8.26 in 1971 to 5.71 in 1972. The most evident improvements were in the >1800 ton class where the overall country mean climbed steadily from 1.49 in 1969 to 7.27 in 1973. Nearly all countries experienced increases each year except Poland which decreased from 1968 to 1969, Bulgaria and GDR which declined from 1971 to 1972, and Poland and the USSR which dropped moderately from 1972 to 1973 . Individual country coefficients ranged from 0.92 for Romania in 1970 to 11.34 for GDR in 1973.

Adjustment of the effort of the USSR 151-500 ton class for learning in 1968 and 1969 resulted in all coefficients being 25% and 5% smaller in those 2 years, respectively, than with the effort unadjusted. These percentage decreases equalled the adjustments initially made to the effort of the standard class to compensate for learning.

The effort standardization coefficients indicate that the fishing ability or efficiency of most of the country-tonnage class categories, particularly the 901-1800 and >1800 ton classes, did not remain constant throughout 1968-1973 relative to the standard class but rather exhibited a definite marked increase. These results support further the belief that widespread technological improvements occurred in the distant water fleets other than the USSR 151-500 ton class following an initial learning period.

Landings per standardized hour fished were calculated for each year by multiplying the hours fished used in the analysis for each country-tonnage class by the appropriate effort standardization coefficient and dividing the sum of the products into the summed annual landings used in the analysis. Total international effort expressed as standardized hours fished was determined by dividing the total international landings by the landings per standardized hour. Results are given in Table 10 and Figure 3.

Landings per standardized distant water fleet hour unadjusted for learning increased from 0.49 MT in 1968 to 0.77 MT in 1969 to a high of 0.99 MT in 1970 . It then declined to 0.77 MT in 1971 and to 0.53 MT in 1972 followed by a slight improvement to 0.55 MT in 1973. With effort by the standard class adjusted for learning in 1968-1969, the landings per hour were 0.65 MT and 0.81 MT in those years, respectively, instead of 0.49 MT and 0.77 MT . Total international effort expressed as standardized distant water fleet hours fished increased by a factor of 6 from 122,394 hours in 1968 (unadjusted for
learning) to 730,875 hours in 1972 and then decreased slightly (5\%) to 693,025 hours in 1973 . Total hours fished with the learning adjustment increased by a. factor of 8 from 92,266 hours in 1968 to 730,875 hours in 1972 and then decreased 5\% to 693,025 hours in 1973.

Discussion

The recent expansion of the mackerel fishery in Subarea 5 and Statistical Area 6 was characterized by a large increase in effort and catch and a marked decline in stock abundance. This decline has been documented by four separate independent measures of catch-per-unit-effort. US commercial fishery landings per standardized day, US research vessel spring and autumn bottom trawl survey catch per tow ($\log _{\mathrm{e}}$ scale), and distant water fleet landings per standardized hour all declined following the intensification of the fishery after 1968 by the distant water fleet. It is interesting that relative stock abundance in 1972 and 1973 as measured by US commercial landings per day was similar to that in 1966 and 1964-1965, respectively (Table 10, Figure 3), but that total international landings differed substantially. In 1964-1965 when landings averaged only $3,400 \mathrm{MT}$ and in 1966 when the catch was $9,431 \mathrm{MT}$, the stock was increasing in abundance but was only lightly exploited. However, in 1972 and 1973 with landings at 387,364 MT and 381,164 MT, respectively, stock abundance was decreasing and exploitation was heavy. The peak exhibited by each of the abundance indices did not occur in the same year. US commercial landings per day peaked in 1968, US autumn and spring survey catch per tow in 1967 and 1968, respectively, and distant water fleet landings per hour in 1970. The important fact is not that all of the indices failed to agree on the same year for greatest stock abundance but rather that there was agreement in indicating declining stock abundance following the peak year, US survey and distant water fleet landings per hour indices indicated a stabilization in the decline 1973 -1974 and a possible modest improvement in stock abundance, whereas US commercial landings per day showed a continued decline in 1973.

The rapid increase in landings which began in the 1960's required substantial fishing effort, much of which was diverted after 1971 from declining sea herring stocks. International mackerel effort, expressed as standardized US days fished, underwent a 135-fold growth from 1964 to 1973 and a 33-fold rise from 1968 to 1973 and, expressed as standardized distant water fleet hours fished (with adjustment for learning), increased 7 -fold from 1968 to a peak ial 1972.

The expansion in fishing effort resulted in an estimated increase in instantaneous fishing mortality on age 4 and older mackerel from 0.06 in 1969 to $) .60$ in 1973 (ICNAF, 1974). The strong 1967 and 1966 year-classes provided a major part of the landings during 1968-1972. Age compositions of commercial landings show that 80% of the estimated number landed in 1973, however, consisted of the smaller 1968-1972 year-classes (ICNAF, 1974). It is not likely that these less abundant year-classes can support future landings comparable to those in 1971-1973 without further increases in fishing mortality and a further reduction in stock abundance. Nationally-allocated total allowable catches were established by ICNAF at 304,000 MT for 1974 and 285,000 MT for 1975 based on assessment advice that these TAC's would stabilize fishing mortality at a level no greater than in 1973. Future increases in landings can be justified only if year-classes more abundant than those now entering the fishery are recruited.

Literature cited

Borkowska-Kwinta, I. 1964. Preliminary account of the Polish fishing effort in the North Sea and English Channel during 1953-1962. Int. Coun. Explor. Sea, C.M. 1964, Comp. Fish. Comm. No. 71 (mimeo).
1970. Research on the fishing power of the Pofish fishing fleet. Int. Coun. Explor. Sea, C.M. 1970, Spec. Mtg. Meas. Fish. Effort, No. 12 (mimeo).
Brown, B. E., J. A. Brennan, M. D. Grosslein, E. G. Heyerdahl, and R. C. Hennemuth. 1975. The effect of fishing on the marine finfish biomass in the northwest Atlantic from the eastern edge of the Gulf of Maine to Cape Hatteras. Int. Comm. Northw. Atlant. Fish., Res. Bull. 12 (in press).
Clark, J. R. 1962. The 1960 salt-water angling survey. US Fish Wildl. Serv., Circ. 153, 36 pp.
Deuel, U. 4. 1973. 1970 salt-water angling survey. uS Dept. Com., Cur. Fish. Stat. No. 6200, 54 pp.
\longrightarrow Publ. $67,51 \mathrm{pp}$. . Clark. 1968. The 1965 salt-water angling survey. US Fish Wildl. Serv., Res.
Grosslein, M. D. 1969. Groundfish survey progran at BCF Woods Hole, US Fish Wildl. Serv., Comm. Fish. Rev. 31 (8-9): 22-35.

Hoy, D. L., and G. M. Clark. 1967. Atlantic maci:erel fishery, 1804-1965. US Fish Wiadl. Serv., Fish.
Leaf. $603,9 \mathrm{pp}$.

ICNAF. 1974. Report of Standing Committee on Research and Statistics - May-June 1974. App. I, Ann. 2. Report of ad hoc Mackerel Working Group. Int. Comm. Northw. Atlant. Fish., Redbook 1974: 117-120.

Robson, S. 1966. Estimation of the relative fishing power of individual ships. Int. Comm. Northw. Atlant. Fish., Res. Bull. 3: 5-14.

Schumacher, A., and V. C. Anthony. 1972. Georges Bank (ICNAF Division 52 and Subarea 6) herring assessment. Int. Comm. Northw. Atlant. Fish., Ann. Meet., Res. Doc. No. 24, Ser. No. 2715 (mimeo).

Sette, O. E., and A. W. H. Needler. 1934. Statistics of the mackerel fishery off the east coast of North America, 1804 to 1930. US Bur. Fish., Invest. Rept. 19, 48 pp.
Tabie 1. Mackerel landings (MT) from ICNAF Subarea 5 and Statistical Area 6 in 1981-1973.

Year	Bulqaria	Canada	Cuba	FRG	GDR .	$1+41 y$	Japan	Poland	Romania	_Spain	USSR	US	Other	Total
Subarea 5														
1961	----	-	----	----	----	----	----							
1962	----	----	--.-	----	---	----		111	----	----	----	1.027	-	1,027
1963	----	----	----		------			111	---*	----	---	822	-----	933
1964	-----	-...	----	-----				---	----	----	896	1.202	----	2,098
1965	----	---.	-	--	----		-----*	-*	---	--..	533	1,264	---	1,797
1966	-	--	----	---	-----	-----*	-----	$\frac{1}{6}$	---	----	2,475	1,467	11	3,954
1967	-	--	\cdots	90	48	----	----	507	3 138	-----	5,446 11,007	1,903	---	7,358
1968 1969	1,966	-	--	119	3.184	----	1	10.160	138 283	-----*	11,907 33,981	3,216 3,001	$\cdots 68$	15,907
1969 1970	1,966 1,949	-	--	99 1.009	2.021	---	197.	13,421	151	---*	31,981 47,547	3,001 3,873	68 253	50,777 69,528
1971	1,632	--	145	1,175	2,920 7,090	-----	463	40,987	758	-	56,457	3,092	----	107,635
1972	7,452	1	9	-757	25,372	--	272 209	43,682 61,486	1,774	3	59,074	1,593	----	116,440
1973	24.369	53	-	1,260	54,874	--	150	100,729	515 905	6	103,686 132,335	1,025 621	-----	200,518 315,296
Statistical Area 6														
1961	-ume	----	----	----	--									
1962	---*	----	----	-	--	----	--**	----	----	----	-	334	----	334
12 Cl	-...-	----	-a..	-	-	----	----	---	----	--*	---	116	-	116
1964	----	-....	----	-	--	-----	------	---*	----	----	¢ 23	118	--	411
1965	-...0-	----	----	-	--	------	-----	----	-m-	----	94	380	--	474
1966	- --	----	----	--	---	--	----	-----	----	----	53	531	---	584
1967	----	--	----	----	163	-	45	-----	----	----	1,252	821	----	2,073
1968	\cdots	16	-	2	158	---	311	448	----	-----	6.087 7.333	675	----	6,970
1969	2117		-	---	193	----	326	4,977	-----	-----	7,333 37,563	928	-	9,196
1970	2,058 26,875	--	--	+ 45	2,711	---	1,037	27,153	-----	-----	37,563 68,026	491 957	-----	43,667 1015987
1972	26,875 16,104	---	---*	1,620 13	62,083 55,165	800	753 895	68,612	2,747	47	68,026 68,754	957 813	----	101,987 232,304
1973	7,374	-----	-----	267	55,165 21,884	800 375	895 296	80,513 16,525	2,004	----	30,371 13.461	981	----	186,846
				267	21,884	375	296	16,525	4,971	-*--	13,461	715	----	65,868
Iotal .														
1961	-	----	--*-	----	----	----		---						
1962	--	----	-	--	---	--.-.	-----	----	----	----	---*	1,361	-	1,361
1963	----	----	----	-	---	----	-----	111	---*	-----	--7	938	----	1,049
1964	----	-...-	----	----	-	---	---	----	-----	----	1,189	1,320	----	2,509
1965	----	----	*	----	----	-	-	\square	-	----	. 627	1,644	-	2,271
1966	---*	-	----	---	---	-	----	6		------	2,528	1,998 2,724	11	4,538
1967	-----	----	-..--	90	${ }^{211}$	----	46	507	138	------	6,698 17,994	12,724 3,891	-----	9,431 22,877
1968	2,083	16	-	121	3,342		312	10,608	283	-----	17,994	3,891 3,929	---	22,877
1970	2,083 4,007	-----	-----	$\begin{array}{r}99 \\ \hline\end{array}$	2,214	----	523	18,398	151	-----	85,110	3,929 4,364	68 253	59,973
1971	28,507	-----	145	1,054 $\mathbf{2 , 7 9 5}$	5,631 69,173	-----	1,500 1,025	68,140	+ 758	---7	124,483	4,049	253	209,622
1972	23,556	1	145 9	1.795 770	69,173 80,537	800	1,025 1,104	112,294 141,999	4.521	50	127.828	2,406	----	348,744
1973	31.743	53	----	1,527	76,758	375	1.104	141,999 117,254	2,519 5,876	6	134,057 145,796	2,006 1,336	---	387,364

Table 2.
Mackerel landings (MT) from directed mackerel effort by US gear-tonnage class categories used in the
and Statistical Area 6. Annual proportion of these landings compared to the total uS and interational landings is show.
Gear $\begin{array}{r}\text { Tonnage } \\ \text { class }\end{array}$

Table 3. Effort standardization coefficients calculated for US gear-tonnage class categories

1/ Exciudes standard category: floating trap $0-50$ ton class.

Table 4. Stratified mean catch per tow (pounds) of mackerel from US bottom trawl surveys in the spring (strata 1-14, 61-76) and fall (strata 1-2, 5-6, 9-10, 13, 16, 19-21, 23, 25-?6) expressed on linear (spring only) and loge scales with standard deviation and coefficient of varlation.

Year	Date			Spring						Fall					
				Linear			Loge			Date				Loge	
				Wean	S.D.	C.V.	Mean	S.D.	C.V.					Mean	5.D.
1963		*---		---*	----	--**	---*	----	----	13	Nov	-14	Dec	0.02	0.02
1964		--		----	----	----	---	----	----	22	Oct	- 4	Dec	. <0.01	<0.01
1965		--		--	--	----	----	----	----	6	Oct.	.- 9	Nov	0.07	0.03
1966		---		--	----	----	---	--	----	13	Oct	-13	Nov.	0.09	0.03
1967		-		--	----	----	----	-*-*	-	25	Oct	- 9	Dec	0.32	0.07
1968	2 Mar	-14		17.28	8.04	46.5	0.73	0.12	16.4	10	Oct	-20	Nov	0.17	0.06
1969	5 Mar	-22		- 0.17	0.11	64.7	0.03	0.01	33.3		Oct	-22	Nov	0.21	0.08
1970	18 Mar	-29		6.75	2.10	31.1	0.56	0.09	16.1	15	Oct	-20	Nov	0.11	0.04
1971	9 Mar	-12		9.68	4.51	46.6	0.52	0.09	17.3	29.	Sep	-19	Nov	0.09	0.03
1972	8 Mar	-25	Mar.	4.82	2.33	48.3	0.42	0.09	21.4	28	Sep	-19	Nov	0.11	0.04
1973	16 Mar	-17		20.36	19.48	95.7	0.25	0.10	40.0	26	Sep	-19	Nov	0.06	0.02
1974	13 Mar	- 7	Apr	2.00	1.00	50.0	0.31	0.09	29.0	23	Sep.	. 25	Oct	0.06	0.04

Table 5. Mackerel landings (MT) from directed mackerel effort by distant water fleet country-tonnage class categories used in the analysis of variance procedure for calculating effort standardization coefficients in ICNAF Subarea 5 and Statistical Area 6. Annual proportion of these landings compared to the total international landings is shown.

Table 6. Vessel classes within country-tonnage class cateqorfes from which data for 1968-1973 were used in the analysis of variance procedure for calculating effort standardization coefficients.

$\begin{aligned} & \text { Tonnage } \\ & \text { class } \end{aligned}$	Bulgaria	GOR	Poland	Romania	USSR
151-500	---	-	----	----	OTSI, SRT
501-900	----	$\begin{aligned} & \text { OTSI } \\ & \text { MTSI } \\ & \text { OTSN } \\ & \text { MTSN } \end{aligned}$	$\begin{aligned} & \text { OTSI, B-10/14 } \\ & \text { OTSI: B-20 } \end{aligned}$	---*	$\begin{array}{ll} \text { OTSI, } & \text { SRTM } \\ \text { OTSI, } & \text { SRTR } \end{array}$
901-1800	----	$\begin{gathered} \text { OT } \\ \text { MT } \\ \text { OTSI } \\ \text { NTSA } \end{gathered}$	$\begin{array}{ll} \text { OTSN, } \\ \text { OTSN, } & 8-29 \\ \end{array}$	-	-
1800	OTSN, BMRT OTSN, Atlantic	OTSN MTSN	$\begin{aligned} & \text { OTSN, } 8-15 / 22 \\ & \text { OTSN, } \\ & \text { OTSN, } \\ & \text { O-18 } \end{aligned}$	OTSN	OTSN, BMRT OTSN, RTM Tropi OTSN, RTM Atlanti OTSN, PPR

```
OT = Otter trawl (Not specified)
MT = Midwater trawl (Not specified)
OTSI = Otter trawl side
OTSN = Otter trawl stern
MTSI = Midwater trawl side
MTSN = Mldwater trawl stern
```

Table 7. Percentage of mackerel in the otter trawl landings of the USSR 151-500 ton class from ICNAF Subarea 5 and Statistical Area 6 in 1968-1973

Year	8 mackerel in total landings	\% mackerel in landings from directed effort
1968	15.1.	48.6
1969	32.9	67.7
1970	63.2	80.3
1971	52.6	74.3
1972	54.0	66.9
1973	32.2	70.4

Table 8. Data used to examine learning and technological improvements by the distant water fleets in the mackerel fishery in ICNAF Subarea 5 and Statistical Area 6.
Table

[^0]Table 9. Effort standardization coefficients calculated for distant water fleet country-tonnage class categories without adjustments for learning and with the standard USSR 151-500 ton class edjusted for learning in 1968-1969.

Tonnage class	Country	1968	W1thout learning					Mean	1968	1969	With learning			1973	Mean
			1969	1970	1971	1972	1973				1970	1971	1972		
151-500	USSR	1,90	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1600	1.00	1.00
501-900	GDR	0.90	1.03	1.13	2.71	1.55	2.22	1.59	0.68	0.98	1.13	2.71	1.55	2.22	1.54
	Poland	2,29	1.25	1.21	1.31	1.63	1.73	1.57	1.72	1.20	1.21	1.31	1.63	1.73	1.47
	USSR		1.40	1.03	0.90	0.95	1.02	1.06	d.72	1;34	1.03	0.90	0.95	1.02	1.05
	Mean	1.60	1.23	1.12	1.64	1.38	1.66	$1.43{ }^{1}$	1.20	1.17	1.12	1.64	1.38	1.66	1.37
901-1800	GDR Poland	3.67	-	2.01	8.26 4.00	5.71 6.01	7.35	5.33 5.25	2.76	-	2.01	8.26 4.00	5.71 6.01	7.33	5.33 5.02
	Mean	3.67	-	2.01	6.13	5.86	7.33	$5.28{ }^{1}$	2.76	-	2.01	6.13	5.86	7.33	5.15
$\geqslant 1800$	Bulgarla	-	1.54	2.21	4.82	3.59	7.55	3.94	-	1.47	2.21	4.82	3.59	7.55	3.93
	GDR	-	1.23	2.87	9.63	9.13	$11 . \hat{4}$	6.84		1.17	2.87	9.63	9.13	11.34	6.83
	Poland	2.45	1.50	3.07	. 4.66	9.60	8.84	5.02	1.84	1.43	3.07	4.66	9.60	8.84	4.91
	Romania	-	-	0.92	1.89	2.31	3.42	2.14	-		0.92	1.89	2.31	3.42	2.14
	USSR	1.63	1.68	2.60	3.19	5.61	5.21	3.32	1.22	1.60	2.60	3.19	5.61	5.21	3.24
Mean ${ }^{2}$	Mean	2.04	1.49	2.33	4.84	6.05	7.27	$4.33{ }^{1}$	1.53	1.42	2.33	4.84	6.05	7.27	4.28
		2.19	1.38	1.89	4.14	4.61	5.41		1.64	1.31	1.89	4.14	4.61	5.41	

Table 10. International mackerel landings and measures of s tandardized catch per effort and fishing effort in ICNAF Subarea 5 and Statístical Area 6.

Year	International landings (MT)	Landings per std. US day	Landings per std. DWF hour		International effort		
						std. Dh	hours
			Wrthout learning	$\begin{aligned} & \text { With } \\ & \text { learning } \end{aligned}$	Std. US Days	Without learning	Wi th learning
1964	2,271	0.43	-		5,281		
1965	4,538	0.49	-	-	9.261	-	
1966	9,431	0.84	-		11.227		
1967	22,877	1.75	-		13,073	-	
1968	59,973	2.80	0.49	0.65	21,419	122.394	66
1969	113.195	1.92	0.77	0.81	58,956	147,006	139,747
1970	209,622	2.07	0.99	0.99	101.267	211,739	211,739
1971	348,744	1.29	0.77	0.77	270,344	452,914	452,914
1972	387,364	0.84	0.53	0.53	461,148	730,875	730,875
1973	381,164	0.53	0.55	0.55	719.177	693,025	693,025

Fig. 1. Area off the northeastern coast of the United States as defined by Divisions and Subdivisions of ICNAF Subarea 5 and Statietical Area 6.

Fig. 2. US mackerel catch, 1804-1960. Most of the catch is from US waters, although a small amount 18 Canadian waters. Data were taken from Table 25 in Sette and Needler (1934) and from Hoy and Clark (1967).

Fig. 3. International landings, US comercial and distant-water fleet landings per standardized effort, and international effort expressed as standardized US days and distant-water fleet hours for the ICNAF Subarea 5 and Statistical Area 6 mackerel stock.

Fig. 6. Effort standardization ccefficients for the distant-water fleet country-tonnage classes calculated without learning adjustments.

[^0]: ${ }^{2}$ Stock size (age 1+) in thousands of metric tons calculated by ad hoo Mackerel Working Group at per hour icivir Annual Meeting.
 4Ratio of observed C/E to predicted C/E.

