the Northwest Atlantic Fisheries

Serial No. 3538
ICNAF Res.Doc. 75/56
(D.c. 2)

ANNUAL MEETING - JUNE 1975

V.A. Slepokurov AtlantNIRO
Kaliningrad, USSR
ABSTHALI
The parameters of growth equation of Bertalanfy
K, t_{0}, L are determined by the method of Hoendorf (1966),
Ford (1933), Walford (1946).
Preliminary aseessment of natural mortality of
herring from Nova Scotia is given.
INHRODUCTION
For assessment of the size of fish population stocks
by modern mathematical methods the growth parameters K ,
t_{0}, L are to be derived. These values are used in the equa-
tions by Beverton and Holt (1957), Inurphy (1965), Katty
and Qasim (1968) et al.

MATERIAL AND HETHODS

The following material was used for determination of the growth parameters: Canadian data for 1969-1971 - for herring from Diviaion 4X (Sampling Yearbook, vol.14,15, 16); Soviet data for 1967-1971 and 1969-1971 - for Divisions $4 W$ and $4 V$ accordingly. The parameters of growth equation were determined according to Hoendorf (1963). For determination of mean theoretical maximum length both
the method of Hoendorf, and graphic method of Ford (Ford, 1933) and Walford (Walford, 1946) were used.

The assessment of natural mortality was made according to Beverton and Holt (Bevertom and Holt, 1959) and Gulland (Gulland, 1965).

RESULIS

The calculations showed (tables 1,2,3) that the parameter Values obtained were within the real ranges. The deviations of calculated length compared with the observed one did not exceed 3.3%. The values of mean theoretical maximum length determined by two methods are characterized by insignificant deviations which fact indicates their reliability.

The data obtained suggest that growth rate of herring from Nova Scotia is somewhat lower than that of herring from Georgea Bank region. According to our calculations for Georges Bank herring $K=0.43$, while for Nova Scotian herring the values of K were $0.23,0.27,0.22$ (for Divisions 4X,4W and 4V accordingly).

The coefficient of K can be used for preliminary ${ }^{\text {f }}$ assessment of natural mortality. Beverton and Holt (1959) and Gulland (1965) give corresponding ratios of these values $\mathrm{M}=1.2 \mathrm{~K}$ and $M=1.5 \mathrm{~K}$. On the base of dependence data and on averaging the values obtained, the natural mortality rates for Nova Scotian herring by Diviaion $4 X, 4 W$ and $4 V$ can be found. These are $0.3,0.4$ and 0.3 accordingly.

CONCLUSIONS

1. Nova Scotian herring growth rate is somewhat lower compared with that of Georges Bank herring which was determined from deriviation of growth parameters according to Bertalanfy.
2. The calculated preliminary natural mortality rates of Nova Scotian herring (Divisions $4 X, 4 W$ and $4 V$) exceed of Georges Bank herring which is being adopted by ICNAF Working Group.

REPERENCES

1. Beverton R.J. and Holt S.J., 1957. On the dynamics of exploited fish populations. Fishery investigations. Jer.2; v. 19.
2. Beverton H.J. and Holt S.J., 1959. A review of the lifespans and mortality rates of fish in nature and their relation to growth and other physiological characteristica. Ciba Foundat. Sympos. Lifespan Aminals.
3. Ford E., 1933. An account of theherring inveatigationg conducted at Plimouth during the years

4. Gulland J.A., 1965. Manual of methods for fish stock assessment. FAO Fisheries Technical Paper No. 40, Revision 1. Part 1. Pish Population Analysia.
5. Hoendorf K., 1966. Fine Diskussion der BertalanffiFunctionen und ihre Andwendung zur Charakterisierung des Wachstums ven Fiseken. Kieler Meerforchungen, Helz 1.
6. Katty M. K. , Qasim J. $_{0} Z_{0}$, 1968. The estimation of optimum age of exploitation and potential yield in fish populations. J. du Cous., v. 32. Ho 2.
7. Wurphy G.J., 1965. A solution of the catch equation. S. Fish. Res: Bd. Canada No 22.
8. Walford I.A., 1946. A new graphic method of describing the growth of animals. Biol. Bull., 90 (2).

- 4 -

Table 1. The calculation of growth parameters for herring from Division $4 \AA$

Table 2. The calculation of growth parameters for herring from Division 4W

Table 3. The calculation of growth parameters
for herring from Division $4 V$

Fig. 1. Determination of mean theoretical maximum length of herring from Div. 4X (by method of Ford (Ford, 1933) and Walford (Walford, 1946)).

Fig. 2. Determination of mean theoretical maximum length of herring from Div. 4 W (by method of Ford (Ford, 1933) and Walford (Walford, 1946)).

Fig. 3. Determination of mean theoretical maximum length of herring from Div. 4 V (by method of Ford (Ford, 1933) and Walford (Walford, 1946)).

