International Commission for

the Northwest Atlantic Fisheries

Serial No. 3542
(b.c. 9)

ICNAF Res.Doc. 75/60
(Revised)
ANNUAL MEETING - JUNE 1975
Squid fisheries (Loligo pealei and rllex illecebrosus) off the Northeast United States, ICNAF Subarea 5 and Statistical Area 6 .
by

Anne M. Tibbetts
National Marine Fisheries Servico
Northeast Fisheries Conter
Woods Hole, Massachusetts, 02543

The biology of the two commercially important squid species (Loligo pealei and Illex illecebrobus) is reviowed. Comercial catch and effort statistics are presented and discussed as indicators of the increased interest of various countries in this fishery in Subarea 5 and Statistical Area 6. Monthly landings and surv cruise data are used to estimate species composition of the landings. Also commercial length frequency data and research cruise length frequency and catch per tow indices are analyzed to document trends in abundance.

Introduction

Squid species (essentially Loligo pealei and Illex illecebrosus) in the Northwest Atlantic, ICNAF Areas 5 and 6, until the late 1960's supported only a small US coastal bait fishery ($1000-2000$ metric tons per year). Since entry of distant water fleets to the fishery in 1964, reported landings have increased Erom 1000 MT to 56,640 MT in 1973 (Figure 1).

There has been concern that these stocks might reach an overfished condition if catches continued to incraase unrestricted. In order to provide for an orderly development of this fishery there is a need to develop an assessment and provide estimates of the offects of various levels of exploitation. Previous assessment papers have dealt primarily with Loligo, and the Total Allowable Catch of between 50,000 MT and 80, 000 NT, recommended by STACRES for 1974, was based primarily on a Japanese (Ikeda et al., 1973) ostimate of Loligo's stock size and possible yield. The TAC sot by ICNAF for 1974 and 1975 was $71,000 \mathrm{MT}$.

This paper reviews the biology, landings, research vessel survey results, length composition and estimates of stock size of both species of squid found in ICNAF Subarea 5 and Statistical Area 6.

Biology

The two specios of squid of commercial importance in this area, are Loligo pealei (common, winter or longfinned) and Illex illeoebrosus (swmer or shortfinned squid). Loligo has been reported as far north as New Brunswick but is primarily distributed from Cape Hatteras to Corsair Canyon on Georges Bank. Illax is a more northern species ranging to southwost Greonland, with highest concentrations from Newfoundland to the Gulf of Maine, and offshore south to New York.

Seasonal differences in distributions are avident in both species (as illustrated in fig. 6A-L from US groundfish survey cruises). Loligo probably forms one stock which migrates as much as 200 km generally remaning in waters above $8^{\circ} \mathrm{C}$. In the winter they are found offshore primarily in $8^{\circ}-12^{\circ} \mathrm{C}$ water along the
upper continental slope, from westem Georges Bank to Cape Hatteras. The spring onshore movement appears to begin in the south, proceoding northward. By April larger, mature Loligo move inshore as far north as the Delaware area to spawn. US commorcial landings from 52 w (1973, 1974) indicate that these large individuals arrive in the Massachusetts area by late April. Snallor individuals, in much greater numbers, arrive in May and June. Fall groundfish surveys show that the range in Loligo catches is much wider (from 14 to 4.4 lbs per tow) and generally lower, where bottom temperatures age less than $14^{\circ} \mathrm{C}$ (but groater than $\mathrm{B}^{\circ} \mathrm{j}$ (5 . f rchuk and Rathjon, 1974); while at temperatures groator than 14° (batwoon Chesapeake Bay and Cape Hattorasi) few catches are less than 1.5 pounds per tow. This consistently greater volume of $L o l i g o$ per tow, in warner waters indicates an increase in aggregation tendoncy in each area as the temperature increases or the soason progresses.

The greatest number of eggs are spawned in the month of May and hatch in July (Sumers, 1971). Size differences in young-of-the-yoar (YOY), and observations of ripe adults from commercial samplos in 5Zw in July and on fall groundfish survey cruises in September, indicato an extended broeding season of about 6 months.

Loligo can be expected to live $14-24$ months and grow to $18-28 \mathrm{~cm}$ (dorsal mantle length), though some males survive to about 36 months and greator than 40 cm (Sumaers, 1971). There may also be a significant number of two-year-old's that survive two spawning seasons, as seen in April 1973 where about 25% of the commercial samples were 30 cm or over and presumably about $1 \frac{1}{4}$ years old. However, it is generally assumed that heavy mortality occurs after first spawing so that such individusis may have not spawned in their first season.

Loligo grows an average $1-1.5$ ca per month (Summers, 1971), with males growing faster and larger than females. A length weight equation for sexes combined was derived from a loast squares fit of the Ln of

Illex belongs to an oceanic family, the Ommatrephidae, and little is known of its biology or life history. Seasonal migrations to coastal Newfoundiand, Nova Scotia and New England, into 10-15 meters of water, in the spring and summer allow for an inshore fishery. At this time large surface schools may be formed. In late fall (October-December) movement is to the southeast and open ocean from Newfoundland, and offshore in SA 5 and 6 . Unlike Loligo, Illex is not restricted to water above $8^{\circ} \mathrm{C}$ (Mercer, 1973), and catches vary relative to depth and temperature combinations. illex is found in greater concentrations alang the edge of the shelf, where temperatures are generally greater than $5^{\circ} \mathrm{C}$. Spawning is believed to occur offshore at great depths from December to June (primarily December to March), with most Illax dying after spawing. They are faster growing and generally shorter lived than Loligo, surviving 12-16 months and 24-35 cm, with monthly increments of about 2 cm for both sexes.

The USSR reports (1973 Redbook, part II) that generally one generation of Illex is found, with mean length of 14 cm in May, growing to 22 cm in October. Spring catches consist of small individuals and summer catches are primarily imature. They find that in October male gonads are $60-80 \%$ developed while females are just beginning to ripen, and feel that the females will reach maturity during the spawning migration to open ocean.

Mercer (1973) gives the length-weight equations as:

$$
\begin{aligned}
& \text { Males: } W=.004034 L^{3.511} \\
& \text { Peasales: } W=.01301 L^{3.1090}
\end{aligned}
$$

with constants derived from a least squares linear fit of the L of weight vs. the in of length.
Both Illex and Loligo feed on small fish, crustaceans and squid of their own or other species. Illex is an important predator on capelin in the Newfoumdland area and may strand themselves on the beaches in pursudt of this species.

Squid themselves are preyed upon in varying degrees by about 40 fish species ${ }^{1}$ (Table 1), and by marine mamals, as the pilot whale (Mercer, 1974), indicating great importance in the food web of the

Commorcial fishory

United Srates squid catches off Now England have been roported since the late 1800's (averaging 500-2000 MT), but until recently there has been no separation of species in reported landings. Interest in squid in Subarea 5 and Statistical Area 6 by other countries has increased since the USSR first reported catches in 1964, (during the time of the Soviet buildup of the red and silver hake fisheries in 52 and 6). In 1973 there wore 11 countries, besides the US, reporting squid landings totaling 55;000 MT (Table' 2).

Aside from a uS inshore trap fishery for Illex (for use as bait in other fisheries), squid are fished with otter trawls, on the bottom.

The US bait fishery for Illex is located in shallow water east and north of Cape Cod, during the summer (April-September). Loligo is caught throughout the year, but about 95\% of the uS landings are reported in April-June.

Japan, Spain and Itlay participate primarily in the offshore directed squid fishery, initiated by Japan in 1967. Spain entered this fishery in 1970 and Italy in 1972 . Japan and Italy fish for loligo from October to March along the edge of the continental shelf (the Japanese have a butterfish fishery associated ith their fishery for Loligo, so effort data is reported as a mixed fishery). Spain has, in addition to this winter fishery, steadily increased its effort into the summer months exploiting Illex in the same offshore waters. Lopez-Veiga (1974), describes a separate fishery for each species, along the shelf edge, distinguished by season. In the period April-September, primarily Illex is landed, and from October to April it is primarily Loligo, Illex having moved into deep water. The Spanish squid fishery also produces a substantial by-catch of species as butterfish and mackerel (up to 65\% in March and April).

Separating catches of squid to species by month and area of landings, total estimated species landings (Figure 2) and landings by species and country (Table 3) were calculated by two different methods (unless roported otherwise): 1) landings from October through March were considered to be Loligo, while April through September catches were assumed to be Illex, and 2) October through March landings were again considored as Loligo but April through September catches were broken down further. Fifty percent of the inshore landings were considered Loligo, derived from 1969 summer survey catches where only 54% of squid in strata loss than 60 fathoms were Illex (Table 4) (spring and autumn composition was less than 108 Illex); and 408 of the offshore landings wore assumed to be Loligo. This decision was made from observations of occurrences of toligo at depths greater than 60 fathoms during the summer survey cruise (about 35\%) and as reported by Spain (Lopez-Veiga, 1974), where about 35% of their April-September squid catches are Loligo.

Fishing effort and catch per effort

Commercial catch per effort trends are difficult to describe as squid catchos have only been reported as a directed fishery in the last three years. Table 5 shows metric tons per days fished, for landings with squid (both species) as the main species, (i.e., comprising greater than 50% of the total landings of a gear type in an area); as reported in the 1972 and 1973 ICNAF Statistical Bulletins for all countries. Also shown are US commercial estimates from 1970 and 1971, and Japanese and Spanish estimates from the ICNAF Statistical Bulletins (1970, 1971) for the mixed and mollusc fisheries respectively, where shellfish (assumed to be squid) were greater than 50% of the total landings by month, area and gear type.

The changes in catch per effort (1972 to 1973) of the two major countries with a directed fishery, Japan and Spain, are consistent. Increases in effort by these two countries as reported in the 1973 ICNAF Statistical Bulletin are not reflected in similar increases in landings (except in 5 ze for Japan), resulting in decreases in catch per effort. Japanese medium (1000-2000 tons) stern trawler effort increased from 26 to 226 days fished while landings only increased from 480 to 3018 MT , producing a 35% drop in C/E from 1972 to 1973. Spanish small ($500-1000 \mathrm{gt}$) stern trawlers participating in a directed squid fishery reported increases of effort from 1048 to 2024 days fished with landings of 11861 in 1972 increasing only to 14932 MT. This also indicates a 35% decrease in C/E. Japanese large stern trawlers (greater than 2000 tons) did, however, exhibit a 48 increase in C/E. (Landings by this vessel class decreased from 15779 to 9597 MT). Spanish reports (Lopez-Voiga, ot al., 1974) of sample catch per unit of effort (in MT/GRT) increased from 1969 to 1973 for Loligo and until 1972 for Illex, after which there was about a 30% drop in both species. These decreases may imply that the entire squid stocks (primarily Loligo) in 52 and 6 are under substantial exploitation, (i.e., F is a significant part of the total mortality on the stock). The catch per effort ratio for squid for other countries fluctuates by year in the different areas. Reported statistics indicate increased interest in a directed squid fishery by France in Areas 5 and $6 A$ (from 71 days fished in $6 A, B, C$ in 1972 to 85 days fished in 1973 in 52 w and 6A only, while landings increased from 300 to 820 MT); and by Federal Republic of Germany, with the addition of large (over 2000 GT) stern trawlers in 6 A and 6 B , with a 1204 overall increase in days fished, from 61 to 148.

Length and age composition

US commercial length samples were taken for each species of squid between July 1972 and December 1974. Aging has not been done on either species, as a technique has not yet been developed. However, a growth scheme and spawning schedule has been described by Summers (1971) and Squires (1967) for Loligo and Illex, respectively, both based on the assumption of heavy post spawning mortality after one year of age. Squid, that survive a spawning season prosumably were prevented from spawning, perhaps by a mating behavioral
mechanism.

Growth for Loligo, shown from comercial length frequencies (Figuce 3, A, B), is similar to what Summers describes (the position of his growth modes are indicated by the slanted lines).

There are generally three modes to be seen during the course of the year. In January, the first mode is "one year olds", probably 6-7 months (hatched last summer and will probably spawn this coming summer), and two modes of larger "two year olds", 13-14 months (fall spawned-most will spawn this spring) and 18-19 months (summer spawned-will spawn this spring). By March and April the "two year olds" (now 18 cm and greater) mature, and bogin spawning in late April. The larger (28 cm and larger) "two year olds" spawn and most disappear from the fishery by May. Some of the younger " 2 year olds", now 16-17 month $20-25 \mathrm{~cm}$ will survive until fall. At this time younger "one year olds" ($5-6$ months, $9-11 \mathrm{~cm}$ which were spawned in late summer or fall of the previous year) arrive and are recruited. Spawning of most "two year olds" is probably completed by June while one year olds continue to ripen and spawn through September. The earliest spawned young-ofyear first appear in the fishery in September at about $6 \mathrm{~cm} ; 1972$ exhibited a high proportion of large individuals (over 30 cm) in August, which did not appear in later samples. These were probably two or three year olds which later moved offshore or died in September. In April 1973 (in SA 6 samples) there was an oxtremely high ratio (about 24\%) of "two year old" Loligo (over 30 cm), arriving to spawn. These may be associated with the great number of Loligo ($20-28 \mathrm{~cm}$) which arrived in 5 Zw in October 1974. The length frequencies at that time suggested that extended spawning from spring to fall had been taking place in previous years.

Japanose and USSR commercial Loligo length frequencies from the 1970, 1972, and 1974 fishery are consistent with US samples, demonstrating presence of larger individuals ($30-40 \mathrm{~cm}$) in the fishery in March and April, with the upper limit decreasing to about 19 cm in May. Japanose and Soviet samples (ICNAF sample data, 1974) indicate that sizes decreased in April in Statistical Division 6B and 6C in 1974, presumably due to earlior seasonal warming and subsequent earlier onshore migration of the main spawning stock to this area.
rllex length samples from the US commercial fishery in Subaroa 5Y for 1972-1974 (Figure 4) indicate a single mode through most of the year. However, in May and June of 1973, the distribution of sizes ranged from a high proportion of smaller individuals $(10-17 \mathrm{~cm})$ to a low proportion of large individuals ($23-35 \mathrm{~cm}$). As $I l l e x$ is believed to spawn from December to Jume the great range in length could be due to differences in time of hatching of a single year class, the older and larger squid arriving first. Large Illax disappear after June, leaving one size category until November when YoYs begin to appear in the fishery (see Figure 8b Fall Groundfish Survey length frequencies).

Polish and USSR length frequencies of Illex taken in 1973 and 1974 (ICNAF samples, 1973 and 1974) showed large individuals ($26-35 \mathrm{~cm}$) present in the fishery in March, but not in later months. It has not been explained why mature-sized individuale are in the inshore fishery as late as June, when spawning has been assumed to be all offahore. Beginning in May there is a aingle mode (average length -15 cm), this mean length increases to 21 cm by August, but in September recruitment of the new year clase ($5-12 \mathrm{~cm}$) lowers the mean length to 17 cm . Japanese samplea from July, August and September 1974 in southern areas 6A-6C, show mean lengths to 20 cm in September. In October large Illax begin to move offshore presumably to spawn, and the average length dropa to 11.5 cm in November.

In general, then, the commercial length frequencies of both species show the progression of the main group of individuals hatched the previous year. But in Loligo there may be second and third modes also appearing in the spring that are variable in importance from year to year. These probably correspond to groups two and three years in age.

Research vessel cruises

Abundance index

Estimates of relative abundance were made using sets of strata from US Groundfish Survey Cruises (Grosslein, 1969), which approximate the areas of the Middle Atlantic (strata 61-76), Southern New England (1-12), southern (13-15), eastern (16-18), and northern Georges Bank (19-25) (Figure's), for fall (Septem-ber-November) and spring (March-Apri1) cruises (1967-1974). Stratified mean ln catches per tow of Illex and Loligo were examined using these areas (Table 6). Loligo is abundant primarily in the Middle Atlantic and Southern New England in autumn, but is also consistently found on Southern Georges Bank. Illax is found primarily in Southern New England and Southern Georges Bank in fall and is relatively unavailable to surveys in spring.

Survey distributions (Figure 6-A-L) indicate that both species are distributed inshore and offshore during autumn surveys, although the extent of onshore movement of Illex is variable between years. (Note 1970 vs. 1973 Autumn.) Loligo is concentrated along the continental slope from Cape Hatteras to Corsair Canyon, and Illex is not often found in the survey area during the spring. Autumn surveys were consequently chosen as the best measure of relative abundance of these two species in this area, (Middle Atlantic to Georges Bank).

Autumn strata weighted mean Ln lbs per tow for all areas were plotted (Figure 7) to illustrate the overall trend of squid abundances (1964-1973). The Loligo index of abundance fluctuates from a low of . 99 Ln mean pounds per tow in 1967 to 1.76 in 1969, drops again to 1.07 in 1971 and rises to a high of 2.26 Ln mean pounds per tow in 1973, showing a general increase during this period.

Illex indices are lower and less variabie than Loligo, ranging from a low .08 mean ln pounds per tow in 1969 (when Loligo indices were high) to a high of .34 in 1971 (when Loligo indices were low). The Illex abundance shows a decrease, from 1971 to 1973, when Lotigo was increasing.

Length composition

Length compositions from stratified mean number at length, per tow, for Southern New England and Middle Atlantic, fall and spring cruises (1969-1973) for Loligo (Figure 8a) indicate presence of fower (note change of scale in graph) but larger squid (to 30 cm) in spring, prior to spawning. In fall numbers increase and sizes decrease to $3-6 \mathrm{~cm}$, from recruitment of the ' 0 ' age class. Beginning in 1971 in Southern New England and 1972 in Mid-Atlantic the increased proportion of Loligo in the $10-20 \mathrm{~cm}$ group during spring Indicates more extensive spawning had been occurring in previous summer and fall months. There were also increased catches of the immature group (less than 10 cm) in the spring beginning in 1971, especially in the Mid-Atlantic area, though this may be due to availability changes during these years.

Availability of Illex in the survey area during spring is low, as soen in the distribution charts (Figure 6-g-1). In 1972 and 1973 there were too few Illax in the samples to obtain length frequency distributions in the Southern New England and Middle Atlantic strata. Where spring samples are available there is a single mode (Pigure 8b), ranging from 5 cm in 1969 to 17 cm in 1971 ; representing a high portion of yoy in 1969 and older squid (probably about 8-10 months, hatched late in the previous season) in 1971. Fall samples have broader size ranges $(4-23 \mathrm{~cm})$ with one or two modes. In 1969 there was a single mode at 20 cm , in 19701973 there were two modes at $5-7$ and $17-18 \mathrm{~cm}$. These modes probably represent two groups of yoys spawned early (December-January) and late (May-June). Absence of larger Illex in these cruises is due primarily to the time of year that the surveys are made. Spring cruisós are conducted in late March and early April, after many of the larger Illex have spawned and died. In fall (late September and October) it is assumed that large individuals have begun to move offshore to spawn.

Prerecruit index

US and foreign commercial catches of Loligo indicate that recruitment of individuals 8 cm and less had not begun by fall survey time, I therefore used the mean number per tow in this size range as an index of relative strength of incoming year classes (Table 7), Foreign catches indicate that catches of Illex less than or equal to 10 cm are minimal before the fall survey cruises, so 10 cm was used as a prerecruit value for rllex.

It does not appear, loaking at survey indices, that the Loligo fishery has reached the point where the total landings are noticeably influenced by the size of the prerecruited fall stock, i.e. even though fall prerecruit indices have dropped, as in 1970 and 1971, landings have continued to increase. However, the US commercial spring landings (1973 and 1974) do reflect high proportions of Yoy Loligo, as indicated in the 1972 and 1973 fall indices. Foreign samples also reflect greater proportions of smaller Loligo (less than 15 cm) from January and February catches of 1970 and 1974 (when the 1969 and 1973 fall indices were high), than in 1972 when the fall 1971 index is lower.

Illex prerecruit abundance indices are lower and changes are less notable than with Loligo, there is also insufficient landings and length data to establish trends relating these indices to the landings.

Stock size estimates

Abundance indices from survey cruises can be used to provide a minimum estimate of squid biomass, wath the equation

```
\(B^{\prime}=\frac{W A}{a}\),
where \(B^{\prime}=\) estimates of biomass
\(W=\) stratified mean weight per tow
\(A=\) strata area sampled (in square miles)
a area swept by each tow ( 0.011 square miles).
```

Diel variations (caused by vertical migrations) in relative apparent abundance of Loligo, are significant, with daytime (0800 to 1600 hrs) catches (mean pounds per tow) 2 to 12 times greater than night catches. Using the total daytime mean catch per tow/total nighttime mean catch per tow ratio of Loligo, calculated from three gear comparison cruises using both the No. 36 and the No. 41 Yankee trawls, as a correction factor to increase night abundance indices to a level relative to times when Loligo were most available to the bottom gear, minimum estimates of Loligo biomass were made (this ratio was also applied to Illex night catches to provide a base estimate of the biomass of this species, as gear comparison, diel variations in Illex catches have not been examined) (Table 8). A second estimate of biomass was obtained using the average of: the gear comparison day/night ratio times the mean nighttime weights per tow; and the daytime mean weight per tow, as W in the above equation. This estimate was then raised by the ratio of the catchability of the $41 / 36$ nets (1.41) to produce a third estimate which will account for the wider opening 41 Yankee Net (personal communication, Bowman, 1974).

It should be noted that Illex has a wider distribution and consequently the abundance indices observed in the survey areas may reflect yearly distributional differences.

The abundance of Illex by these indices is about 4t of that of Loligo; the abundance of Loligo is about 58,000 MT. Theae are minimum ostimates.

Discussion

Squid landings of the two species, Loligo and Illex, have increased about 50 fold since entry of the first distant water fleet to the fishery in 1964. The steady increase from incidental catches to 56,800 MT in 1973 reflects the growing interest of the 12 countries now roporting squid catches. Comparisons of catches and effort exerted by the two countries reporting directed squid fisheries (Japan and Spain) show overall decreases in catch per effort in their 1973 squid fisheries.

Relative abundance an also be determined from research vessol surveys. These indices are limited by the availability of squid to the bottom trawl gear, which as presented oarlier in this paper, is less for Illex than Loligo, and varies with the time of day. The results are in general agreement with previous estimates of stock size (Ikeda, at al., 1973). The fall indices indicate a continual increase in Loligo abundance since 1971, accompanied by a continual decrease in the mean pounds per tow of Illex (probably due primarily to availability, not abundance). The possible 'waraing trend' (see terperatures, Table 6), may be affecting the squids inversely, as can be expected because one species is more northern and prefers cooler waters. Squid populations, with their rapid maturity and growth, can be expected to respond rapidly to onvironmental changes.

Commercial length-frequencies indicate that the fishery for Loligo is concentrated on the spawning stock in the spring (15 cm and larger), with some immatures being landed. In the fall mature (18 cm and larger) and maturing (less than 15 cm) Loligo are taken. Yoys are first recruited in Septeaber (at about 6 cm) in relatively small numbers.

US and foreign lengths samples, and observations of maturity of ILLax, indicate that this species is fished in the summer while it has moved inshore. As spawning will occur in the winter and spring the fishory is concentrated on immature individuals.

Squid may be expected to respond to exploitation with little delay effects because they are shortlived. Therofore a gradual development of the squid fisheries toward the optimal harvest rate would be most dosirable.

Literature cited

Alverson, D. L. (ed.) 1971. Manual of Methods of Fisheries Resource Survey and Appraisal. Part I. fan, Rome.

Grosslein, M. D. 1969. Groundfish survey program of BCF Woods Hole. US Fish. Wildl. Serv., Comm. Fish. Rev. 31 (8-9): 22-35.

Ikeda, I., H. Imanaga, and F. Nagasaki, 1973. Stock assessment of squid in ICNAF Subarea 5 and Statistical Area 6. ICNAF Res. Doc. 73/62.

Lopez-Veiga, E C., and E. Labarta, 1974. Some observations on the Spanish squid (Illex and Loligo) fishery in Subarea 5 and Statistical Area 6 of the ICNAF. ICNAF Working Paper No. 3.

Mercer, M. C. 1973. Length-weight relationship of the omastrephid squid, Illex illeosbrosus (LeSueur). ICNAF Res. Doc. 73/72.

Mercer, M. C. 1974. Modified Leslie-DeLury assessments of the Northern Pilot Whale (GLobicephala melaena) and annual production of the short-finned squid (Illex illecebrosus) based upon their interaction at Now foundiand. ICNAF Res. Doc. 74/49.

Kanstantinov, K. G. . and A. S. Noskov. 1973. USSR Research Report, 1972. ICNAF Redbook, Part II, p. 90.
Assessments Subcomittee. 1973. ICNAP Redbook, Part I, p. 83.
Serchuk. F. M., and W. F. Rathjen. 1974. Aspects of the distribution and abundance of the longfinned squid, Loligo pealsi, between Cape Hatteras and Georges Bank. Mar. Fish. Rev. 36(1): 10-17.
Squires, H. J. 1967, Growth and hypothetical age of the Newfoundland bait squid, Illex illecebrosus illecebrobus. J. Fish. Res. Bd. Canada, 24(6): 1209-1217.

Summers, W. C. 1971. Age and growth of Loligo pealei, a population study of the common Atlantic coast squid. Biol. Bull. 141: 189-201.

Table 1.. Fish predators of squid*

Pelagic	Benthic	Inshore
Bonito	Haddock	Stlverside
Bluefin tuna	Cod	Smelt
Skipjack tuna	Pollock	3-spine stickleback
Mackerel	Red hake	Weakfish
Swordfish	Silver hake	
	Spotted hake	
Semi-pelagic	Tom cod Sea robin	Other
Alewife Butterfish Scup Bluefish Striped bass Redfish		Spiny dogfish
		Smooth dogfish
	Four-spot flounder	Mackerel shark
	Fluke	Thresher shark
	Sand flounder	Barrelfish
	Barndoor skate	
	Little skates	
	Big skates	
	Tflefish	
	Longhorn sculpin	
	White perch	
	Toadfish	
	Sea bass	
	Goosefish	
*From 1) Roland	personal communicat	

Tabie 2. Annual squid landings in metric tons, 1963-1973, by country. ICNAF Areas 5 and 6.

Table 3. Estimated species breakdown for squid landings- In ICNAF Areas 5 and 6.

- Catches separated by using Japanese seasonal ratio.
b - 1967-1970 catches separated by using 1971 Japanese ratio.
d-1973 figures in parentheses for Japan, Spain, Romania, and Buigaria are actually reported Loligo and Illex breakdown for 1973.

Table 4. Percent composition of IZlas in catches of squid from groundfish surveys, by depth range and area (strata).

Year	Cruise	Season	Depth	Mid-Atlantic $(61-76)$	So. New Eng (1-12)	Georges Bank $(13-20)$
1969	Albatross IV	Summer	$\begin{aligned} & <60 \mathrm{fm} \\ & >60 \mathrm{fm} \end{aligned}$	3.7	75.8	26.8
1972	Albatrose IV	Spring		38.7	100.0	100.0
			$>60 \mathrm{fm}$	0.0 0.1	0.0	
1973	Albatrose IV	Spring	<60fm	0.1	0.2 0.0	
1970	Albatrose IV	Fall	$>60 \mathrm{fm}$	0.0	1.0	
			$\stackrel{60 \mathrm{fm}}{ }$	6.1	1.7	8.4
1971	Albatrose IV	Fall	$>60 \mathrm{fm}$ 60 fm	22.7 4.3	15.7 3	91.2
1972	Blesk	Fall	$>60 \mathrm{fm}$	90.0	10.7	19.4 72.2
			<60fm	2.2	4.5	72.2
1972	Albatrose IV	Fall	260 fm $<60 \mathrm{fm}$	74.0 2.3	15.8	
			$>60 \mathrm{fm}$	71.3	8.9 12.0	39.0
1973	Belogorsk	Fall	${ }^{<60 \mathrm{fm}}$	1.2	0.2	
1973	Albatroes IV	Fall	>60fm	67.4	6.1	
			$>60 \mathrm{fm}$	13.9	0.3 3.2	6.8

Table 5. Squid mean landings per diy in metric tons by division, country, gear.

Thll Japanese C/E based on 2A hours/diy.

Table 6. Stratified mean Ln catches per tow (in pounds); and temperature for Loligo pealei and Illex illecebrosus, from U.S. Survey Vessel. Spring and Fall, 1967-1973.

AREA	Strata	Year	$\begin{gathered} \text { Loligo } \\ \operatorname{Ln} w t / \text { tow } \\ \hline \end{gathered}$	RIMG Illex Ln wt/tow	$\text { Temp. }{ }^{\circ}{ }^{\circ} \mathrm{C}$	Loligo Ln wt/tow	Tllex Ln wt/tow	Temp. ${ }^{\circ}{ }^{* *}$
Mid-At1.	61-76	1967	--	--	--	2.18	. 16	13.3
		1968	. 28	. 00	5.7	2.32	. 12	13.6
		1969	. 14	. 10	5.5	2.29	. 06	15.5
		1970	. 35	. 04	7.5	1.46	. 23	10.0
		1971	. 44	. 03	6.9	1.18	. 21	13.1
		1972	1.47	. 00	8.7	2.68	. 25	16.0
		*1973	. 82	. 01	8.0	-2.62		14.4
			1.92	. 07	10.3			
So. New Eng.	1-12		--	--	--			
		1968	. 45	. 04	5.0	1.92	. 47	11.1
		1969	. 49	. 01	5.7	2.47	. 13	12.1
		1970	. 41	. 01	6.1	1.41	. 22	10.6
		1971	. 76	. 01	6.3	1.45	. 34	10.8
		1972	. 85	. 00	7.0	1.48	.41	12.7
		${ }^{1} 1973$. 75	. 01	6.8	2.71	. 12	13.0
				. 08	8.3		. 08	13.1
So. Georges Bank	13-15	1967	6	--	--	. 66	. 29	8.4
		1968	. 63	. 00	6.3	. 57	. 42	12.6
		1969	1.02	. 00	6.8	1.26	. 13	12.7
		1970	. 36	. 00	5.9	. 80	. 38	10.8
		1971	. 63	. 02	5.8	. 89	. 95	11.9
		+1972	. 89	. 02	7.3	. 69	. 28	11.8
		*1973	1.23	. 09	8.9	1.81	. 16	13.2
				. 07	7.8	. 99	. 30	12.6
East Georges Bank	16-18	1967	--	--	--	. 41	. 05	8.2
		1968	. 00	. 01	3.9	. 54	. 50	10.3
		1969	. 18	. 00	5.4	. 60	. 08	10.1
		1970	. 13	. 02	4.8	. 85	. 18	9.2
		1971	. 05	. 00	4.6	. 37	. 20	10.8
		1972	. 06	. 00	5.8	. 19	. 14	10.2
		*1973	. 00	. 00	6.2	1.87	. 34	11.9
		1974	. 00	. 00	6.9	. 40	. 02	12.0
No. Georges Bank	19-25	1967	--	--	--	. 02	. 05	7.1
		1968	. 00	. 00	4.7	. 18	. 24	9.7
		1969	. 00	. 00	4.7	. 36	. 01	8.9
		1970	. 00	. 00	5.0	. 39	. 16	9.9
		1971	. 00	. 00	4.8	. 60	. 38	11.2
		1972 +1973	. 00	. 00	5.0	. 73	. 23	10.5
		1973 1974	. 00	. 00	5.4	1.25	. 40	11.0
*Spring 1973 relative abu **Mean bottom	cruises ndances temperat	were ma are not ures pe	. .00 comparable. strata set	$\frac{.00}{\text { trawi, ins }}$	$\frac{6.6}{\text { ead of } Y}$	$\begin{array}{r} .94 \\ \hline \text { ee } 36 ; \end{array}$. 08	10.9

Table 7. Prerecruit index (strata mean number (less than recruited size) per tow)) from fall survey cruises, for Loligo and Illex (Middle Atlantic-Georges Bank).

Year	Loligo ($\leq_{8} \mathrm{~cm}$)		ILlex (510 cm)	
	mean /tow	mean wt/tow	mean "/tow	mean wt/tow
1967	126.9	6.8	0.7	0.1
1968	159.9	12.2	0.6	0.1
1969	217.4	16.5	0.3	0.03
1970	79.3	5.2	0.2	0.1
1971	161.5	6.1	0.6	0.05
1972	258.8	11.6	1.8	0.1
1973	353.9	19.6	0.3	0.04

1974

Table 8. Minimum biomass estimates for squid in $5 Z$ and 6 (in metric tons) from survey cruise abundance indices.

Year	LoLigo			ITlex		
	Ba^{\prime}	B'	$\mathrm{B}_{\mathrm{C}}^{1}$	Ba_{a}^{\prime}	咕	B^{1}
1967	15,268	25,922	36,550	1,128	4,583	6,461
1968	28,063	47,011	66,286	1,480	4,231	5,966
1969	37,586	59,437	84,098	311	1,793	2,529
1970	12,025	28,875	40,714	1,079	13,338	18,806
1971	11,694	17,784	25,075	1,351	7,667	10,812
1972	25,396	25,115	35,412	1,423	8,522	12,016
1973	42,250	62,965	88,781	883	6,480	9,138
1974		60,119	84,768		13,390	18,880

[^0]

F 1

U.S. Commerodal Length-Frequancies

1974 DEC

Lo7igo pealei
ICNAF Statistical Area 6

(CENTMMETERS)

(CENTWETERS)

Figure 3b. US commercial length frequencies of Loligo pealei, in ICNAF Statistical Area 6, 1973-1974.

- 18 - .

Figure 5. Strata areas, Middle Atlantic to Georges Bank, used in analysis of
US groundfish survey abundance indices.

Pigure ce. Spring 1970 distribution of Lotigo pectel froe tis groundfish survers.

F 9

Pigure 6f. Aution 2973 distribution of t tigo pacalei from us groundfish surveys.

Figuse 69. Autum 1970 distribution of IZlex illeosbroaus froe uS groundfish surveys.

Figure 6k. Autiva 1972 distribution of illex tlinoebroune frow us groundfish surveys.

Figuxe GA. Autwan 1973 distribution of Illex tilacobroous frow us groundfish eurveys.

Figure 8a. Mean numbers at length per tow of Loligo pealai from US groundfish surveys, spring 1969 to autumn 1973 in the Middle Atlantic and Southern New England strata.

Figure 8b. Mean numbers at length per tow of Illex illecebrosus from US groundfish surveys, spring 1969 to autumn 1973 in the Middle Atlantic and Southern New England strata.

[^0]: $B_{a}^{\prime}=$ minimum estimate using total survey abundance indices
 $B_{b}^{\prime}=$ estimate using average of: (day-night ratio from gear comparisons X mean nighttime weights per tow) and daytime mean weight per tow.
 $B_{c}^{\prime}=B_{b}^{\prime} \times 1.41$ (41/36 trawl ratio for İoligo in gear comparison)

