International Commission for

the Northwest Atlantic Fisheries

ICNAF Res.DOC. 75/62

ANNUAL MEETING - JUNE 1975
 Assessment of the ICNAF Division 5Y silver hake stock

by
E.D. Anderson
National Marine Fisheries Service
Northeast Fisheries Center
Woods Hole, Massachusetts 02543, USA

Abstract

Landings and commercial catch per effort have declined steadily in recent years in the US Div. $5 Y$ silver hake fishery. Estimates of silver hake caught and discarded by the redfish, shrimp, and silver hake fisheries have been substantial since 1970. Age composition of both landings and discards was presented, with the latter comprised mainly of age 0 and 1 fish. US survey results indicate a decline in stock abundance in recent years in spite of a strong 1971 year-class and above-average year-classes in 1972-1973. Mean selection age was determined to be about 1.75 years with $F_{\text {max }}=0.6$. Virtual population analysis was performed to estimate fishing mortality and stock size. A catch in 1975 equal to the TAC of 15,000 MT would require $F=0.52$, a decrease from $F=1.1$ in 1974 , but would consist primarily of non-marketable age 1 fish. A 1976 catch of $22,500-25,100 \mathrm{MT}$ would be taken if $\mathrm{F}=0.52-0.6$. Continued high levels of catch of age 0 and 1 fish may prevent the rebuilding of the stock.

> Commercial fishery

The Gulf of Maine (ICNAF Div. 5Y) fishery for silver hake has been conducted exclusively by the US with only incidental catches by the USSR, FRG, GDR, and Bulgaria in recent years. The US fishery is conducted from May-December mainly by ot ter trawlers fishing on concentrations of silver hake that have moved inshore to spawn following overwintering in deep, offshore waters. Vessel trips generally last only a day. The fish are landed fresh and either processed at the respective port for human consumption or transported to New York or other large cities for sale as fresh fish. If any of the landed catch is too small or otherwise undesirable for processing as a food product, it undergoes reduction to meal and oil.

Landings

Commercial landings averaged 28,500 MT from 1955 through 1966 varying from 21,448 MT in 1956 to 36,980 MT in 1957 (Table 1, Figure 1). Landings dropped from 21,495 MT in 1966 to $14,653 \mathrm{MT}$ in 1967, increased to 24,706 MT in 1968 , but declined steadily to 6,651 MT in 1972. Following an increase to 8,896 MT in 1973 , landings decreased to 5,208 MT in 1974 , which includes 4,633 MT by the US and 575 MT by the USSR.

The 1974 monthly landings pattern differed markedly from past years (Table 2). Fishermen reported that fishable concentrations did not appear in traditional grounds in Jume-August as in previous years, but rather in October-November. The November landings in 1974 were higher than in any other month and were higher than November landings in any other year since 1964, except 1971. Only in 1974 were the monthly landings greatest in November. This pattern also prevailed in 1972 when peak landings occurred in October instead of in July or August with a similar amount taken in November.

Catch per effort

Landings per day of US vessels have declined markedly since 1957 (Table 1, Figure 1) and have closely paralleled the pattern of landings. Landings per day averaged 16.7 MT during 1957-1964, decreased first to an average of 11.3 MT in $1965-66$ and then to 5.8 MT in 1967 . Following a sharp rise to 14.7 MT in 1968 which
accompanied a large increase in landings that year, landings per day then drapped sharply to 1.99 MT . in 1971. In 1972 and 1973, landings per day increased to 4.4 and 4.9 MT , respectively. However, the 1974 value declined to 0.92 MT . Even during October-December, when landings increased as fish moved inshore in large concentrations, landings per day were substantially less than in previous years.

Discard

Silver hake caught incidentally in fishing operations directed towards other species, and undersized and ummarketable silver hake caught in the silver hake fishery, are routinely discarded at sea. The amount of fish discarded has been generally unknown except for estimates obtained from interviews with a limited number of vessel captains. Discard information concerning silver hake was available only for 1972-1974 and was limited to certain axeas, months, and fishing ports. Analysis of interview data indicated that estimates of silver hake discard were available from the redfish, shrimp, and silver hake fisheries. Although silver hake discarding occurs in nearly all months of the year, the major amoumt occurs during the summer and fall. The weight of discard from a particular vessel trip was expressed as a percentage of the landed weight of the main species. Percentages were averaged for each month and over all statistical areas in Div. 5Y. The US silver hake fishery in Subdiv. 5Ze is conducted in a similar manner to that in Div. 5 Y , including the practice of discard. Therefore, discard estimates from Subdiv. 5Ze were applied to Div. $5 Y$ when the latter were not available.

Discard information from the US redfish fishery was available only in 1972. Silver hake discard was estimated to be 24% of the redfish landed weight in July-November. In order to determine comparable estimates for other years, it was assumed that the percentage of discard was roughly proportional to stock abundance as measured by US fall survey pounds/tow (discussed later--see Table 8). Results given in Table 3 indicate that estimated discard from the redfish fishery varied from 52 MT in 1968 to 886 MT in 1972.

Discard information from the US otter trawl shrimp fishery was available only in 1974. The shrimp fishery began to develop rapidly in the late 1960's; landings peaked in 1969. As this fishery intensified, shrimp catches which previously had been limited to December-April were taken additionally throughout the summer and fall. This new summer and fall fishery produced considerable amounts of silver hake discard. Discard in 1974 was estimated to be 163% of the May-November landed weight of shrimp, or 4,526 MT. The shrimp fishery utilizes small mesh nets (approximately 45 mm codends). Although length frequencies of discarded silver hake are not available, reports indicate that most of the discard is sma1l fish (ages 0 and 1). To determine the estimated discard for other years, it was assumed that the percentage of discard relative to shrimp landings was proportional to the abundance of ages 0 and 1 fish as measured by US fall surveys. Abundance of ages 0 and 1 fish in a given year was determined as the mean of the age 0 index in that year and the previous year. Results (Table 3) indicate an increase in estimated discard from 1 MT in 1967 to 4,816 MT in 1972.

Estimates of discard from the silver hake fishery were obtained for 1972-1974 from interview data. These estimates indicated the discard to vary from 6\% (502 MT) of the June-December silver hake landings in 1973 to 135\% ($6,846 \mathrm{MT}$) of the May-November landings in 1972 . The 1974 estimate was $61 \%(2,400 \mathrm{MT}$) of the July-November landings. Since the discard from the silver hake fishery is small fish (primarily ages 0 and 1), estimates for 1965-1971 were therefore determined using the same procedure as described for the shrimp fishery. The percentage of discard relative to landings in 1972 was used as the base for determining the other years. Results showed a peak in discard in recent years of $8,417 \mathrm{MT}$ in 1971 (Table 3).

Total discard from the redfish, shrimp, and silver hake fisheries varied from an estimated 437 MT in 1967 to a high of $12,548 \mathrm{MT}$ in 1972, with the 1974 estimate being $7,181 \mathrm{MT}$.

Total catch

Estimated total catch (landings plus discard) from the Div. 5 Y silver hake stock for 1965-1974 is given in Table 4. Catch varied from $26,376 \mathrm{MT}$ in 1968 to $12,190 \mathrm{MT}$ in 1973 . Discard averaged less than 10% of the landings during 1965-1970. However, in 1971, 1972, and 1974 discard exceeded landings with the maximum being in 1972 when discard was nearly 190% of the landings. The total estimated catch in 1974 was $12,389 \mathrm{MT}$. Addition of the estimated discard to landings in 1973 and 1974 results in the catch exceeding the TAC of 10,000 MT set for those two years. However, those TACs were advised on the assumption that the catch included only landings, since the magnitude of the discard of small fish was unknown at that time.

Age composition of the landings

Length frequency samples from commercial landings were available for 1955-1974. Age-1ength data available from 1962-1963 and 1965-1967 were combined and applied along with the length frequencies to the total landings from 1955-1972 to estimate numbers of fish landed at age. Data for each sex were combined.

The 1962-1963 and 1965-1967 age data were determined by examining whole otoliths. A new method of ageing thin sections cut from otoliths (Anderson and Nichy, 1975) was used to age samples from the 1973 US spring and fall groundfish surveys. Age-length keys prepared from these data were applied to the 1973 and

1974 length frequencies of landings.
Numbers landed at age for 1955-1974 are presented in Table 5. Ages ranged from 0 to $12+$. Most of the fish were ages $2-5$, with ages $3-4$ predominant in most years. Beginning in 1971, a definite shift occurred towards a greater proportion of younger fish in the landings. In 1971, age 3 was most prevalent, followed by age 2. In 1972, 1973, and 1974, age 2 fish were predominant. The 1973 and 1974 landings contained proportionatley fewer fish in the older age groups ($4+$) than previous years. This phenomenon may have been due, in part, to the new age-length data used.

Age composition of the discard

Length frequency samples were not available from silver hake discarded at sea. The only clues relating to the size and age composition of the discards were from reports and comments by NMFS fishery reporting specialists located in the various ports. Hence, the estimation of the age composition of the discard must be considered as tenuous.

Since the mesh used in the redfish fishery generally varies from 65 mm to 130 mm , larger than used in the silver hake fishery, the silver hake caught (and discarded) were assumed to be mainly larger fish similar in size to those landed in the silver hake fishery. Hence, the estimated weight of the discard was converted to numbers at age pro-rating on the basis of the numbers landed at age in Table 5.

Since the shrimp fishery utilizes codend mesh of 45 mm and reports indicate that the silver hake discarded by this fishery are quite small, it was assumed that the discard consisted entirely of ages 0 and 1 fish. Since the shrimp nets obviously catch silver hake of all sizes, the predominance of small fish in the discard suggests that the larger silver hake may be sorted out of the catch and landed. It was also assumed that the discard from the silver hake fishery consisted only of ages 0 and 1 fish because fish older than this would normally be marketable. In order to estimate the number of age 0 and 1 fish in the discard each year, it was assumed that they occurred in proportion to their relative abundance at age 0 as measured by the US fall surveys. In each year, age groups 0 and 1 were expressed as a percentage of the sum of the age 0 abundance indices of the two groups in the successive groundfish surveys. Mean weights of 0.012 and 0.053 kg were estimated from growth curve and length-weight data, for ages 0 and 1 , respectively. Utilizing the estimated percentages for each age and the mean weights, numbers at age in the discard were determined (Table 6).

Mean weight at age

Mean weights at age of silver hake caught in 1970-1974 are given in Table 7. These weights were calculated by length-weight equations utilized in the procedure for determining numbers of fish landed at length and age.

Research vessel survey results

Relative abundance

US Albatross IV spring and fall survey stratified mean catch (pounds) per tow indices are given in Table 8 and in Figure 2. The fall index dropped sharply from 58.3 pounds per tow in 1963 to a low of 4.2 in 1968. It then improved to 14.3 pounds per tow in 1972 , but declined to 9.2 in 1973 and 8.3 in 1974 . The 1968-1974 spring index followed the same pattern as the fall index.

Recruitment index

Stratified mean number per tow of age 0 silver hake from fall surveys determined by length frequency analysis provided an estimate of the relative size of pre-recruit year-classes (Table 8). Results indicated poor year-classes in 1964-70 following a strong 1963 cohort. The 1971 year-class appeared to be strong, followed by 1972-73 year-classes which were less abundant than the 1971 but stronger than the 1964-70 yearclass. The 1974 year-ciass appeared to be strong.

Yield per recruit

Mesh selection studies by Jensen and Hennemuth (1966) indicated the 50% selection factor for silver hake to average 4.2. Most of the silver hake are caught by commercial vessels with nets having a mesh of $46-51 \mathrm{~mm}$ in the codend. This would imply a 50% selection length (1 c) of $19.3-21.4 \mathrm{~cm}$. Using von Bertalanffy growth parameters of $L_{o o}=60 \mathrm{~cm}, \mathrm{~K}=0.1916$, and $t_{0}=-0.51$, the 50% selection age (t_{c}) was calculated as
$1.5-1.8$ years. 1.5-1.8 years.

Silver hake are vulnerable to the fishing gears in the fall of their first year as age 0 . Therefore, it was assumed that the 50% selection age as determined from the mesh selection data represented the mean selection age in the silver hake fishery.

Beverton and Holt (1957) model of yield per recruit for $M=0.4$ (Fig. 3) indicates that $\mathrm{F}_{\max }=$ 0.6 when $t_{c}=1.75$ years.

Virtual population analysis

Virtual population analysis was performed on the 1958-1973 year-classes using the estimated numbers at age from landings and discard for 1965-1974 and with $M=0.4$. In order to estimate the starting instantaneous fishing mortality (F) (at the oldest age) for each year-class, a oatch curve ($\log _{\text {e }}$ of numbers caught versus age) was plotted for each year-class and a least squares line was calculated through the fully-recruited ages, the slope of which line was total instantaneous mortality (Z). The line was extrapolated beyond the oldest age to estimate hypothetical catches for several years hence for each year-class. The VPA was run using the observed and the hypothetical catches and assuming the starting F to be $\mathrm{Z}-\mathrm{M}(0.4)$. The F calculated for the last year of observed catches was then used as the starting F in a second VPA. The starting F (1974) at age 1 for the 1973 year-class was assumed to be the same as the mean of the age $2+$ fish (weighted by calculated stock size) in 1974.

The calculated F values and stock sizes are presented in Table 9. Examination of the F values by age and by year indicates a decrease in the age at full recruitment from age 4 in 1965-1970 to age 0 in 1971 and up to age 1 in 1972-1974. This change reflects the increase in the amount of discard estimated in 1971-1974. and the resulting high fishing mortality on small fish. Fishing mortality for ages 4 and older (weighted by stock size) increased from 0.76 in 1970 to 1.68 in 1972, decreased to 0.79 in 1973, and then increased to 0.94 in 1974. F for ages 1 and older increased from 0.42 in 1970 to 1.41 in 1972 and dropped slightly to 1.1 in 1973 and 1974. Stock size declined fyom about $47,000 \mathrm{MT}$ in 1970 to $26,600 \mathrm{MT}$ in 1973 . The 1971 yearclass at age 0 was 1.4 billion fish as compared to a mean of 0.22 billion for the weak $1965-1970$ year-classes.

Stock and yield predictions

The relationship between the fall survey mean number of age 0 fish caught per tow (Table 8) and the VPA calculated stock size at age 0 (Table 9) was determined by least squares linear regression for 1965-1973 as: $Y=128263+108763 \mathrm{X}(\mathrm{r}=0.819)$, where $\mathrm{Y}=$ stock size and $\mathrm{X}=$ survey index. The 1974 year-class at age 0 was estimated to contain 1.07 billion fish. The F at age 0 for the 1974 year-class necessary to produce the estimated catch of 165.7 million fish from the estimated stock of 1.07 billion fish was 0.207 . The size of the 1975 and 1976 year-classes at age 0 was assumed to be equal to the mean of the 1969-1973 yearclasses which was 448.8 million fish. The total stock size at the beginning of 1975 was calculated to be 1.08 billion fish or $\mathbf{4 8 , 0 0 0}$ MT.

The partial recruitment pattern assumed for 1975 and 1976 was determined from an examination of the 1972-1974 F's at age calculated by VPA. These data indicated 100% recraitment for ages 1 and older and a mean of 25% recruitment at age 0 .

Mean weight at age for 1975 and 1976 was assumed the same as in 1974 (Table 7).
The catch in 1975 was assumed to be equal to the TAC of $15,000 \mathrm{MT}$. The F in 1975 needed to produce this catch would be 0.52. However, 74% of the weight of the estimated catch in 1975 was from the 1974 yearclass at age 1. Therefore, the level of F is highly dependent on the estimated size of the 1974 year-class at age 0 . If the estimate of 1.07 billion fish was greater than actual, then a higher F would be required to take the 1975 catch.

If, however, a catch of $15,000 \mathrm{MT}$ in 1975 and an F of 0.52 are assumed, the total 1976 stock size (age 0+) will be 963.2 million fish or 70,000 MT. If F is maintained at 0.52 in 1976, the catch would be $22,500 \mathrm{MT}$ and the 1977 stock size would be 917.9 million fish or $67,200 \mathrm{MT}$ assuming the 1977 year-class at age 0 was the same as estimated for 1975 and 1976. If fishing mortality was at the level of $\mathrm{F}_{\text {max }}(0.60)$ in 1976 , the catch would be $25,100 \mathrm{MT}$, and the 1977 stock size (age 0 and older) would be 63,300 門 or 896.9 million fish.

If it is assumed that F in 1975 will remain at the $1973-1974$ level of 1.1 , the catch will be 25,300 MT, leaving a stock size at the beginning of 1976 of $46,100 \mathrm{MT}$. Maintaining an F of 1.1 in 1976 would produce a catch of 24,300 MT but would result in a 1977 stock size of only $36,400 \mathrm{MT}$.

Discussion

The Div. 5 Y silver hake fishery has been characterized by a steady decline in landings and catch per effort since the mid-1950's. The decline in stock abundance has been verified by US fall groundfish survey catch per tow indices. On the basis of survey age 0 indices and stock sizes calculated by virtual population analysis, the stock decline resulted from catches exceeding recruitment. Stock abundance, as measured by commercial catch per effort and survey catch (pounds) per tow data, showed an increase in 1972 following the recruitment of a strong 1971 year-class. Landings in 1973 underwent an increase from the previous year. The
strength of the 1972-1974 year-classes was also much greater than those produced between 1963 and 1971. However, the survey index decreased after 1972 and the commercial catch per effort index declined sharply after 1973. Considering the strong incoming year-classes in 1971 and in the years following, and the low level of landings compared to the 1950's and early-to-mid 1960's, it would appear that the stock should have began to rebuild.

The fact that the stock does not appear to be gaining in size despite good recruitment can apparently be attributed to the massive amount of age 0 and 1 fish caught and discarded particularly by the shrimp and silver hake fisheries. The substantial fishing mortality on age 0 and 1 fish has apparently prevented the rebuilding of the adult stock. If large removals of small fish continue, it would appear that the silver hake stock will continue to remain at low levels of abundance.

Predictions of catch for 1975 and 1976 include both landings and discard. Since 77% or 11,600 of the $15,000 \mathrm{MT}$ assumed to be caught in 1975 were estimated to be age 0 and 1 fish and hence would largely be included in the discarded portion of the catch, only a small part of the TAC would be landed as marketable fish. The present data indicate that the stock of age 2 and older fish is not large enough to produce the 1975 TAC. The estimated 1976 catch of $22,500 \mathrm{MT}(\mathrm{F}=0.52$) or $25,200 \mathrm{MT}(\mathrm{F}=0.60)$ would consist of 16,900 to $18,900 \mathrm{MT}$, respectively, of age 2 and older fish.

Literature cited

Anderson, E.D., and F.E. Nichy. 1975. A comparison between US and USSR silver hake ageing. Int. Comm. Northw. Atlant. Fish., Res. Doc. 75/13.

Beverton, R.J.H., and S.J. Holt. 1957. On the dynamics of exploited fish populations. Min. Agric., Fish. and Food, Fish. Invest., Ser. 2, 19: 533 pp.

Jensen, A.C., and R.C. Hennemuth. 1966. Size selection and retainment of silver hake and red hake in nylon codends of trawl nets. Int. Comm. Northw. Atlant. Fish., Res. Bull. 3: 86-101.

Table 1. Silver hake landings statistics from the Div. 5 Y stock.

Year	Landings (MT)						$\begin{aligned} & \text { US } \\ & \text { landings/day } \\ & (M T) \end{aligned}$	International effort as US days fished
	Bulgaria	FRG	GDR	USSR	US	Total		
1955	-	-	-	-	33,833	33,833	-	-
1956	-	-	-	-	21,448	21,448	9.22	2,326
1957	-	-	-	-	36,980	36,980	26.05	1,420
1958	-	-	-	-	35,522	35,522	16.30	2,179
1959	-	-	-	-	34,750	34,750	16.74	2,076
1968	-	-	-	-	23,628	23,628	13.01	1,816
1961	-	-	-	-	26,576	26.576	17.14	1,551
1962	-	-	-	3.6	26,253	26,253	14.35	1,829
1963	-	-	-	3,660	22,978	26,638	16.04	1,661
1964	-	-	-	-	31,722 22,649	31,722 22.649	13.79	2,300
1966	-	-	-	-	22,649 21,495	22,649 21,495	11.09 11.50	2,042
1967	-	-	-	-	14,653	14,653	5.79	2,531
1968	-	-	-	-	24,706	24,706	14.71	1,680
1969	-	-	- -	-	14,632	14,632	4.89	2,992
	-	-	-		11,384	11,384	2.97	3,833
1971	-	1	3	53	8,263	8,316	1.99	4,179
1972	3	131	93	857	5,570	6,651	4.40	1,512
1973	3	29	34	483	8,347	8,896	4.93	1,804
1974	-	-	-	575	4,633	5,208	0.92	5,661

Table 2. Monthly US landings of silver hake in Div. 5Y, 1964-1974.

Year	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total ${ }^{1}$
1964	1	-	-	-	341	3,635	11,599	7,547	3,965	2,302	1,192	97	30,680
1965	-	-	-		6	1,562	9,663	6,188	3,228	1,425	629	34	22,735
1966	-	-		-	1	1,432	7,143	8,122	2,542	1,598	458	27	21,322
1967	-	1	-	-		918	5,159	4,372	1,781	1,640	507	12	14,389
1968	-	-	-	-	274	2,262	7,931	7,846	4,242	1,989	137.	6	24,687
1969	-	-	-	-	24	1,770	5,883	3,619	1,642	1,211	365	91	14,603
1970	5	4	21	21	285	1,640	4,556	2,667	1712	-835	548	84	11,379
1971	2	1	1	3	7	585	3,349	1,316	452	963	1,436	137	
	10	1	1	3 54	224	214	-866	1,042	-655	1,067	1,010	464	5,556
1973 1974	9 9	9 2	16	54	132 140	792	1,257	1,601	1,262	1,875	813	529	8,348

${ }^{1}$ Total may not correspond to official ICNAF figures.

Table 3. Discard of silver hake by various US fisheries in Div. $5 Y$ expressed as a percentage of the MayNovember (July-November in redfish fishery) landed weight of the main species and as the annual estimated weight, 1965-1974.

Year	Fishery						
	Redfish		Shrimp		Silver hake		
	\%	MT	\%	MT	\%	MT	Total
1965	29	397	-	-	6	1,476	1,873
1966	16	258	-	-	6	1,299	1,557
1967	9	235	2	1	1	201	437
1968	7	52	7	38	6	1,580	1,670
1969	9	270	12	284	11	1,553	2,107
1970	11	374	9	200	8	900	1,474
1971	10	360	120	2,581	104	8,417	11,358
1972	24	886	155	4,816	135	6,846	12,548
1973	15	259	99	2,533	6	502	3,294
1974	14	255	163	4,526	61	2,400	7,181

Table 4. Estimated total catch from the Div. 5 Y stlver hake stock including landings and discard, 1965+1974.

	Landings		Discard
Year	(MT)	(MT)	Total Catch (MT)
1965	22,649	1,873	24,522
1966	21,495	1,557	23,052
1967	14,653	437	15,090
1968	24,706	1,670	26,376
1969	14,632	2,107	16,739
1970	11,384	1,474	19,858
1971	8,316	12,358	19,674
1972	6,651	3,294	12,199
1973	8,896	7,181	12,389
1974	5,208		

Table 5. Number of silver hake landed (thousands) at age in Div. 5 Y during 1955-1974.

Year	Age														
	0	1	2	3	4	5	6	7	8	9	10	11	12+	Total	MT
1955	128	16,088	19,928	32,942	40,734	20,593	12,876	5,810 ${ }^{\text {a }}$	3,111	879	261	259	18		
1956	138	16,404	11,062	21,159	27,643	13,165	12,876	3,8142	1,563	863	128	113	18 8	153,627 103,975	33,833 21,448
1957	104	47,623	16,219	34,482	47,273	22,715	15,595	5,655	2,922	925	230	198	8	193,975 193	21,448 36,980
1958	11	20,068	17,910	30,181	43,871	20,311	16,595	5,154	2,718	879	203	157	10	158,068	35,522
1959	10	7,911	27,156	40,830	39,950	19,610	12,043	5,561	2,957	790	236	232	8	157,294	34,750
1960	-	2,740	30,161	37,809	26,131	10,529	6,028	3,123	1,578	512	163	137	26	118,937	23,628
1961	-	702	21,879	39,071	35,372	14,763	7,284	3,546	1,624	546	167	134	29	125,117	26,576
1962	-	955	18,262	37,657	35,077	14,953	7,569	3,533	1,713	595	204	139	34	120,691	26,253
1963	-	502	15,492	37,255	34,934	13,764	8,041	3,237	1,662	592	191	158	54	115,882	26,638
1964	15	1,106	21,518	34,640	38,443	18,170	9,425	4,752	2,707	889	342	360	114	132,481	31,722
1965	-	180	16,578	28,785	27,108	12,547	6,584	3,541	2,029	777	226	242	73	-98,670	22,649
1966	-	15	9,479	30,526	33,123	14,044	5,375	2,539	1,255	453	162	149	66	97,186	21,495
1967	-	227	3,689	16,364	24,837	11,891	4,797	1,974	689	261	60	38	6	64,833	14,653
1968	-	+ 570	2,728	14,912	35,707	21,262	11,968	4,648	1,849	820	143	98	36	94,741	24,706
1970	-	2,664	2,518	6,603	17,288	11,380	7,633	3,420	1,654	675	152	56	36	54,391	14,632
1971	-	1,812	re,	9,966 13,617	11,016	5,938 4,036	4,908	2,531	1,641	457	241	124	2	43,215	11,384
1972	-	1,840	11,237	6,521	6,052	2,653	2,476	1.136	500	215	74	55	16	45,143	8,316
1973	96	9,914	26,384	8,720	803	-554	2,438	1.101	97	215	76 56	65 23	16	32,787	6,651
1974	32	5,696	12,174	6,230	766	493	304	30	22	26	32	3	-	25,808	8,896

Table 6. Estimated number of silver hake (thowsands) at age in the 1965-1974 discard in Div. 5Y.

Year	Age														
	0	1	2	3	4	5	6	7	8	9	10	11	12+	Total	MT
1965	51,349	16,218	290	504	475	220	115	62	36	14	4	4	1	69,292	
1966	5,459	23,273	114	366	397	168	64	30	15	5	2	2	1	29,896	1,557
1967	646	3,667	59	263	399	191	77	32	11	4	1	$\underline{-}$	$\underline{-}$	5,350	, 437
1968	118,563	3,668	6	31	75	45	25	10	4	2	$\underline{\square}$	-	-	122,429	1,670
1969	21,566	29,836	46	122	319	210	141	63	30	12	3	1	1	122,429 52,350	2,107
1970	13,372	17,747	188	328	362	195	161	83	54	15	8	4	$\underline{-}$	32,517	1,474
1971	806,339	25,016	506	590	450	175	84	43	18	6	2	2	-	833,233	11,358
1972	71,611	204,059	1,498	869	807	354	330	151	67	29	10	9	2	279,796	12,548
1973	64,137	43,045	768	254	23	16	13	3	3	2	2	1	2	108,267	12,598
1974	165,641	93,450	594	304	37	24	15	1	1	1	2	$\underline{-}$	-	260,070	7.181

Table 7. Mean weight (Kg) at age of Div. 5Y silver hake caught in 1970-1974.

Age					
	1970	1971	1972	1973	1974
0	0.012	0.012	0.012	0.012	0.012
1	0.053	0.054	0.053	0.070	0.056
2	0.159	0.132	0.102	0.197	0.192
3	0.217	0.191	0.188	0.272	0.260
4	0.315	0.252	0.287	0.459	0.366
5	0.375	0.290	0.353	0.585	0.409
6	0.437	0.396	0.454	0.491	0.384
7	0.512	0.465	0.628	0.943	0.797
8	0.536	0.549	0.666	1.026	0.922
9	0.565	0.505	0.694	1.119	1.119
10	0.808	0.589	0.908	1.182	1.220
11	0.589	0.653	0.906	1.375	1.057
$12+$	1.522	-	1.298	-	-

Table 8. Stratified mean catch (pounds) per tow of silver hake from US ALbatross IV spring and fall groundfish surveys and stratified mean catch (numbers) per tow of age 0 silver hake from fall surveys.

Year	Pounds per tow		
	$\begin{gathered} \text { Spring } \\ (\text { Strata } \\ 21-30,36-40) \end{gathered}$	$\begin{gathered} \text { Fall } \\ \text { (Strata 24, } \\ 26-30,36-40) \end{gathered}$	Numbers per tow at age 0
1963	-	58.31	11.77
1964	-	10.25	0.15
1965	-	17.39	0.47
1966	-	9.44	0.11
1967	0.06	5.33	0.02
1968	0.06	4.15	0.59
1969	0.40	5.39	0.43
1970	0.68	6.63	0.33
1972	0.78 3.81	6.05	9.56
1973	$1.55{ }^{1}$	14.32 9.20	3.28 4.88
1974	$1.60{ }^{1}$	8.32	8.62

${ }^{1}$ Adjusted from No. 41 trawl catches to equivalent No. 36 trawl catches using a 6.20:1 ratio.
Table 9. Catch of silver hake in numbers (thousands) in Div. 5 in in 1965-1974 and fishing mortalities (F)

[^0]

Fig. 1. Intemational landings, uS catch per effort, and international effort expressed as US days fished for silver hake in Div. $5 Y$.

Fig. 2. Stratified mean catch (pounds) per tow of silver hake from US fall and spring groundfish surveys in Div. 5Y.

Fig. 3. Yield per recruit isopleth for silver hake for $M=0.4$. The heavy solid line indicates $F_{\text {max }}$ at t_{c} and the dashed line indicates t_{c} giving the maximum yield per recruit at a given F.

[^0]: 1Determined from linear relationship between mean number of age 0 fish caught in the fall survey
 and calculated stock size at age 0 for $1965-1973$.
 2Mean of 1969-1973 year-classes at age 0 .

