International Commission for

the Northwest Atlantic Fisheries

<u>Serial No. 3571</u> (D.c. 2)

ICNAF Res.Doc. 75/92

ANNUAL MEETING - JUNE 1975

Canadian mackerel catches (m.t.) and numbers at age in Subarea 4 for 1974.

by

J. J. Hunt Dept. of the Environment Biological Station St. Andrews, N. B. Canada

Catch

Preliminary estimates of Canadian catches of mackerel in Subarea 4 indicate a decline in the total catch to 14,600 tons in 1974 compared to 18,900 tons in 1973 (Table 1). This decrease was the result of reduced catches in Div. 4T and 4Vn which may be attributed in part to unstable market conditions and restricted effort by fishermen. Landings in the Gulf of St. Lawrence (Div. 4T) continued to account for close to 50% of the total Canadian catch.

In excess of 56% of the total catch was taken by inshore-fixed gears (8,200 tons, Table 2). The majority of catches were made in early summer (June and July, 7,600 tons) although landings were made from early May through December.

Sampling

A total of 12,225 mackerel (76 samples) were measured to the nearest half-centimeter length group (fork length) for length frequency analysis. When possible, two fish were selected from each length interval of these length frequencies and subsequently examined for various biological parameters. Approximately 1,800 fish were examined from a total of 46 detail samples.

Biological Parameters

Since biological samples were selected on a length-stratified basis, it was necessary to weight for length frequency numbers. This was accomplished by reducing individual length frequencies to a percent and then combining these frequencies on a monthly basis for Subarea 4 in the same proportion as individual fishing gears were represented in the total monthly catch. Samples combined in this way yielded combined length frequencies reduced to per mille by month.

To obtain length-weight parameters, biological samples (unweighted) were combined by month for Subarea 4 and regression curves fitted to mean weight at length data using a logarithmic transformation. This resulted in curves of the form

Weight =
$$A^*$$
 Length^D

Estimates of age were made from otoliths by counting hyaline (winter) zones excluding the nucleus. Age-group was thus defined as the number of counted zones and year-class as the year sampled minus the age-group.

Age-length keys by month were constructed using numbers at age. The mean length of fish in the catch was determined from weighted length frequencies. This length was used to determine mean weight from the length-weight parameters which yielded total numbers when the monthly catch was divided by mean weight. This total number was then proportioned by the length frequency to arrive at the number of individuals in each length group. Biological samples combined by month gave numbers at age in each length group for samples. The proportion of each age group by length interval was applied to the total number caught to arrive at numbers caught by age group and length interval in the catch. Weighted length frequencies by month are shown in Figure 1. Analysis of these distributions suggests a shift from fish over 30 cm in May to fish under 30 cm in August and then back to larger fish in November. This implies a size-segregated movement of mackerel into and out of Subarea 4 with older (larger) fish arriving first and leaving last. Less than 30% of the catch is composed of fish under 30 cm.

Mean lengths and weights at age, year-class composition and number caught are shown by month in Table 3. Considerable variation in year-class composition is apparent between months with a distinct shift to younger age-groups in the mid-summer. The 1971 year-class is well represented throughout the season and is dominant on an annual basis (22.6%). Mackerel 3 years and younger made up more than 52% of the total catch in numbers and 36% of the catch in weight. The 1967 year-class is still well represented in the fishery but its contribution has declined to 16% of the total catch in weight. Figure 2 are shown in Table 4.

Von Bertalanffy parameters were calculated from mean lengths at age in 1974 to yield the following equation:

$$I_t = 39.57 [1-Exp (-0.31(t+1.81))]$$

Observed data and the resultant growth curve are as shown in Figure 3.

DIVISION	5	6	7	8	9	- <u></u> 10		12	TOTAL	PERCENT
4 T	2	760	3556	1485	828	150	23			
4Vn		661	148	67	348	583	634		2440	40.5
4W	17	880	69	64	158	151	216		1555	10.6
4X	327	1203	299	186	768	527	373	154	3836	26.2
TOTAL	346	3504	4072	1802	2102	1411	1246	154	14637mt.	
SAMPLES	13	24	25	7	34	12	7		` 1 2 2	

Table 1. Canadian mackerel catches by Month and Division in Subarea 4 for 1974.

Table 2. Canadian mackerel catches in Subarea 4 by gear and month.

0747			<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · ·				
	5	6	7	8	9	10	11	12	TOTAL.
Weir	16	85	40	34	121	172	14		481.8
Seines	- 5	474	2930	1144	680	539	664		6434.9
Trawls	1	1	9	2	11	2	1		26.7
Handline	2	19	6	99	247	194	- 4		572 5
Trap	14 6	1252	218	121	506	183	108	16	2547 9
Gillnet	176	1675	870	401	537	321	456	154	4573.7mt.
TOTAL	345.5	3505.5	4072.4	1801. 6	2101.6	1410.6	1246.3	153.7	14637.2
PERCENT	2.36	23.95	27.82	12.31	14.36	9.64	8.51	1.05	

						Ag	e Group					
onth	Parameter	۲	2	e	4	, vo	9	7	. c O	6	01	÷٥
λ	Mean length Mean weight Numbers (10-3) Percent			32.3 321 99 13.3	32.5 374 82 11.0	34.7 464 146 19.6	35.7 519 162 21.7	36.2 540 215 28.8	38.5 572 25 3.3	38.5 665 6 0.8	39.5 675 3 0.4	39.5 740 6 0.7
R	Mean length Mean weight Numbers (10-3) Percent		28.1 243 31 0.4	32.1 346 1268 17.2	33.5 427 808 10.9	35.0 486 1383 18.8	35.9 554 1279 17.4	36.3 574 1557 21.1	37.5 650 473 6.4	38.7 721 280 3.8	39.5 771 74 1.0	40.5 798 196 2.5
۲۷	Mean length Mean weight Numbers (10-3) Percent	21.9 88 54 0.5	27.6 183 471 4.3	31.7 332 3154 29.2	32.5 382 3695 34.2	34.9 481 991 9.1	35.4 507 1159 10.7	35.1 490 919 8.5	36.5 544 268 2.4	36.5 572 34 0.3	37.5 361 34 0.3	41.5 768 11 0.1
GUST	Mean length Mean weight Numbers (10-3) Percent	23.6 127 4275 38.4	24.7 148 6604 59.4	32.0 358 83 0.7	31.9 409 34 0.3	36.5 510 39 0.3		37.5 583 58 0.5		36.5 531 19 0.1		
рт.	Mean length Mean weight Numbers (10-3) Percent	24.9 157 771 11.6	27.0 190 2362 35.7	32.3 305 1476 22.3	33.9 388 680 10.2	35.] 503 409 6.]	36.0 533 410 6.2	36.1 561 344 5.2	36.1 587 89 1.3	38.9 627 18 0.2	39.1 715 43 0.6	
Ļ.	Mean length Mean weight Numbers (10-3) Percent	24.4 115 214 3.3	26.7 189 4706 74.7	31.4 301 924 14.6	33.1 348 253 4.0	34.9 388 91 1.4	35.5 469 23 0.3	36.0 457 62 0.9	35.4 583 24 0.3			
<u>۷</u>	Mean length Mean weight Numbers (10-3) Percent	24.4 172 16 0.6	29.5 270 142 5.4	33.4 375 706 27.2	35.4 496 111 4.2	36.3 523 519 20.0	36.3 522 713 27.4	36.8 562 283 10.9	40.5 856 7 0.2	39.8 747 18 0.6	37.9 692 55 2.1	40.0 714 24 0.9
INUAL	Mean length Mean weight Numbers (10 ⁻³) Percent	23.9 144 3196 7.7	26.3 187 9018 21.8	31.9 328 9342 22.6	33.1 394 5108 12.4	35.0 486 4216 10.2	35.8 530 4137 10.0	36.1 547 4242 10.3	36.9 618 1040 2.5	38.4 686 477 1 2	39.0 712 221	40.4 759 316

C 4

112

.

Age length key for mackerel in Subarea 4 for Annual in 1000's of fish. Table 4.

Catch = 14638Weight = 0.003657(Length **3.3009)

•	4131
	B
	numbers
	Total
	33
	354.
	N
	veight
	Mean w

	Mean	weight .	= 354.33	Tot	al numt	ers = 4	11312									
Lenath							AGE									
Group (CM)	-	2	m	4	2	9	7	8	6	10	Ħ	12	13	14	14+	Total
15-15.9	o	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16-16.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17-17.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18-18.9	O,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
19-19.9	42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
20-20.9	0	167	0	0	0	0	0	0	0	0	0	0	0	0	0	168
21-21.9	294	205	0	0	0	0	0	0	0	0	0	0	0	0	0	499
22-22.9	725	523	0	0	0	0	0	0	0	0	0	0	0	0	0	1248
23-23.9	638	943	0	0	0	0	0	0	0	0	0	0	0	0	0	1581
24-24.9	709	971	26	0	0	0	0	0	0	0	0	0	0	0	0	1706
25-25.9	90e	1687	0	•	0	0	0	0	0	0	0	0	0	0	0	1997
26-26.9	43]	1315	43	0	0	0	0	0	0	0	0	0	0	0	0	1789
27-27.9	29	974	57	0	0	0	0	0	0	0	0	0	0	0	0	1082
28-28.9	ω	610	130	0	0	0	0	0	0	0	0	0	0	0	0 -	749
29-29.9	2	637	403	2]	0	0	0	0	0	0	0	0	0	0	0	1082
30-30.9	0	395	1207	114	0	0	0	0	Ö	0	0	0	0	0	0	1706
31-31.9	0	258	2485	750	0	0	0	0	0	0	0	0	0	0	0	3494
32-32.9	0	224	3144	1636	256	0	65	0	0	0	0	0	0	0	0	5325
33-33.9	0	88	1315	1433	730	468	263	29	0	0	0	0	0	0	0	4826
34.34.9	0	0	337	695	926	759	611	84	0	0	0	0	0	0	0	3412
35-35.9	0	0	175	307	1248	971	86 6	194	28	Ö	0	¢	0	0	0	3911
36-36.9	0	0	88	142	709	1134	992	227	56	0	0	0	0	0	0	3287
37-37.9	0	0	0	22	326	568	852	241	88	6 6	0	0	•	0	0	2163
38-38.9	0	0	0	Ö	8	243	379	126	163	72	0	8	•	0	17	957
39-39.9	0	0	0	0	0	68	89	101	78	23	33	=	33	0	0	416
40-40.9	0	0	0	0	0	~	15	38	Ř	66	~	67	0	2	0	208
41-41.9	0	0	0	0	0	0	0	0	39	=	23	23	=	=	=	125
42-42.9	0	0	0	0	0	0	0	0	0	=	0	Q	و	Q	=	42
43-43.9	0	o i	0	0	0	0	0	0	0	0	0	0	0	0	0	0
44-44.9	0	0	0	0	0	0	0	0	。	0	0	0	0	0	0	0
45-45.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total	3196	9018	9342	5108	4216	4137	4242	1040	477	221	5	135	5	25	41	41312
Mean length	23.9	26.3	31.9	33.1	35.0	35.8	36.]	36.9	38.4	39.0	40.3	39.5	40.3	41.4	40.4	
Mean weight	144.2	187.2	328.4	394.2	485.7	530.1	546.5	617.5	686.3	712.2	751.4	775.6	732.8	822.5		
Percent	7.74	21.83	22.61	12.36	10.21	10.01	10.27	2.52	1.16	0.53	0.15	0.33	0.17	0.06	0.10	

- 4 -

-

•

Fig. 1. Length frequency distribution of Canadian caught mackerel in Subarea 4 by month in 1974 (°/...).

6 -

Figure 2. Year-class composition (annual) in Canadian mackerel catches for 1974.

Figure 3. Von Bertalanffy growth curve for Canadian-caught mackerel (fork length)