International Commission for
 the Northwest Atlantic Fisheries

Serial Yo. 3490
(D.A.74)

ICNAF Sume Doc. 75/16

ANNUAL MEETING - JUNE 1975

UNITED STATES RESEARCH REPORT, 1974

The United States landed fish from ICNAF Subareas 4 and 5 and Statistical Area 6. Research was conducted in Subareas 3, 4 and 5 and Statistical Area 6. Table 1 gives a summary of U.S. finfish and sea scallops nominal catches for 1973 and 1974.

Table 1. United States finfish and sea scallops nominal catches for 1973 and 1974 (metric tons, round fresh).

Species	Year	4	$\begin{gathered} \text { Subarea } \\ 5 \end{gathered}$	6	Total
Haddock	1973	441	3314	2	3757
	1974	675	3034	--	3709
Cod	1973	181	22001	256	22438
	1974	412	25290	61	25763
Redfish	1973	12928	11922	--	24850
	1974	9928	8690	--	18618
Pollock	1973	571	5752	1	6324
	1974	677	7719	4	8400
Yellowtail	1973	2	26139	4937	31078
	1974	5	24160	1777	25942
Other Flounder	1973	78	13185	6144	19407
	1974	83	12640	6234	18957
Silver Hake	1973	--	15976	4024	20000
	1974	--	9535	4686	14221
Red Hake	1973	1	2940	1211	4152
	1974	--	1887	822	2709
Sea herring	1973	--	25505	526	26031
	1974	--	32392	278	32670
Mackere 1	1973	--		716	1401
	1974	--	428	565	993
River herring ${ }^{2}$	1973	--	1561	8735	10296
	1974	--	1589	15186	16775

Table continued next page.
A 2

Menhaden	$\begin{aligned} & 1973 \\ & 1974 \end{aligned}$		$\begin{aligned} & 30780 \\ & 35219 \end{aligned}$	$\begin{aligned} & 299760 \\ & 300000 \end{aligned}$	$\begin{aligned} & 330540 \\ & 335279 \end{aligned}$
Other finfish	$\begin{aligned} & 1973 \\ & 1974 \end{aligned}$	$\begin{aligned} & 162 \\ & 876 \end{aligned}$	$\begin{aligned} & 17206 \\ & 19622 \end{aligned}$	$\begin{aligned} & 37534 \\ & 51037 \end{aligned}$	$\begin{aligned} & 54902 \\ & 71555 \end{aligned}$
Total finfish	$\begin{aligned} & 1973 \\ & 1974 \end{aligned}$	$\begin{aligned} & 14364 \\ & 12676 \end{aligned}$	$\begin{aligned} & 176966 \\ & 182265 \end{aligned}$	$\begin{aligned} & 363846 \\ & 380650 \end{aligned}$	$\begin{aligned} & 555176 \\ & 575591 \end{aligned}$
Sea scallop	$\begin{aligned} & 1973 \\ & 1974 \end{aligned}$	--	$\begin{array}{r} 12853 \\ 9609 \end{array}$	$\begin{aligned} & 6404 \\ & 7810 \end{aligned}$	$\begin{aligned} & 19864 \\ & 17419 \end{aligned}$

${ }^{1}$ Preliminary data.
${ }^{2}$ Alewife and blueback herring.

Subarea 3

B. SPECIAL RESEARCH STUDIES

The U.S. Coast Guard conducted oceanographic surveys in support of the International Ice Patrol in Div. $3 \mathrm{~N}, \mathrm{~L}$, and 0.

Subarea 4

A. STATUS OF THE FISHERIES

1. Haddock

The U.S. nominal catch of haddock from Subarea 4 in 1974 was only 675 tons. Div. 4X landings in 1974 were 670 tons. Landings from Browns Bank, the principal area fished by U.S. vessels in Div. 4X from 1973 (Table 2). Research survey YOY (young of the year) index indicates that abundance will continue low.

Table 2. U.S. haddock statistics, Div. 4X (metric tons, round fresh).

Year	Division 4X		Browns Bank		
	Landings	$\begin{aligned} & \text { YOY Survey } \\ & \text { Index } \end{aligned}$	Landings	$\begin{aligned} & \text { Days } \\ & \text { fished } \end{aligned}$	Landings/ days fished
1965	3,685	1.51	1,786	275	6.5
1966	2,473	1.32	939	200	4.7
1967	5,014	1.10	2,059	381	5.4
1968	3,156	1.51	2,278	506	4.5
1969	1,830	3.31	1,305	389	3.4
1970	1,744	1.03	1,576	493	3.2
1971	751	6.08	605	242	2.5
1972	448	2.28	387	117	3.3
1973	269	1.83	268	107	
1974	670	2.90	648	--2	--2

$1_{\text {Mean }}$ catch per haul (linear scale retransformed from $\log _{10}$ scale).
2Landings/day not calculated due to 10% trip limitation.
2. Cod

The U.S. fleet landed 412 tons of cod from Subarea 4 in 1974, 231 tons more than in 1973.

3. Redfish

U.S. landings of redfish in 1974 from the Gulf of St. Lawrence (Div. 4R, S, and T) were 1,031 tons. Landings from the Scotian Shelf (Div. 4V, W, and X) by U.S. vessels were 8,897 tons, a decrease from 1972. Commercial landings per day and research survey abundances decreased for the Scotian Shelf in 1974 (Tables 3, 4).

Table 3. U.S. redfish statistics, Div. $4 R, S$ and T (metric tons, round fresh).

Year	Landings	Days fished	Landings7 days fished
	17,099	803	
1965	12,766	608	21.3
1966	15,482	622	21.0
1967	16,437	740	24.9
1968	12,122	689	22.2
1969	7,592	593	17.6
1970	4,706	490	12.8
1971	1,111	104	9.6
1972	1,638	144	10.7
1973	1,031	104	12.4
1974			9.9

Table 4. U.S. redfish statistics, Div. $4 V, W$ and X (metric tons, round fresh).

Year	Landings	Days fished	Landings/ days fished	Survey Wt/tow
1965	13,082	1,246		
1966	16,680	1,183	10.5	28.7
1967	6,407	593	14.1	20.2
1968	4,635	297	10.8	33.4
1969	1,142	75	15.8	15.3
1970	1,949	135	15.3	42.6
1971	6,261	404	14.2	50.4
1972	12,365	840	15.5	39.7
1973	11,290	965	14.7	25.7
1974	8,897	780	11.7	38.6
			11.4	16.1

$\mathbf{l}_{\text {Weight }}$ in pounds.

B. SPECIAL RESEARCH STUDIES

Research and environmental studies in Div. 4X are part of a larger program carried out in Subarea 5 and Statistical Area 6. They are reported under Subarea 5.

Subarea 5
A. STATUS OF THE FISHERIES

1. Haddock

Haddock landings from Subarea 5 in 1974 were again limited by quota regulations set by the Comission, and U.S. vessels landed 3,034 tons (Table 5)

Table 5 U.S. haddock statistics, Subarea 5 (metric tons round fresh).

Year	Subarea 5 landings	Div. 5Y landings	Div. 5Zw landings	Div. SZe	
				Adjusted landings/ standard day fished	
1965	57,027	4,204	26	52,797	
1966	57,497	4,579	31	52,887	5.68
1967	39,580	4,852	37	34,691	5.27
1968	28,887	3,418	16	25,453	4.02
1969	18,858	2,402	15	16,441	3.11
1970	9,872	1,457	15	8,400	2.47
1971	8,500	1,194	5	7,301	1.82
1972	4,771	901	3	3,867	1.72
1973	3,314	526	3	2,785	1.77
1974	3,034	628	2	2,404	2.05
					-1

$1_{\text {Landings/day not calculated due to } 10 \% \text { trip limitation. }}^{\text {cat }}$.
The 0-group index for haddock continues low (Table 6). Recruitment will continue to be low through at least 1976.

Table 6. U.S. research vessel index of relative year-class abundance of Georges Bank haddock based on auturan catches of 0 -group fish.

Year	Index	Year	Index
1959	9.6	1967	1.0
1960	2.4	1968	1.0
1961	1.4	1969	1.1
1962	2.6	1970	1.0
1963	12.6	1971	1.4
1964	2.0	1972	2.0
1965	1.2	1973	1.8
1966	1.7	1974	1.3

2 Cod

U.S. landings of cod from Subarea 5 in 1974 increased slightly (Table 7). Total catches by all countries in recent years have been high, exceeding or being close to the sustainable yield. U.S. commercial landings per day fished from Georges Bank have increased since 1968; however, this is probably a reflection of change in fishing practices (i.e. a greater directed fishery for cod in the absence of haddock) The research survey index has decreased to the 1966 level.

Table 7. U.S. cod statistics, Subarea 5 (metric tons, round fresh).

Year	Subarea 5 landings	Div 5Y landings	Subdiv. 5Zw landings	Subdiv. 5ze		
				Landings	Landings/ day fished	$\begin{aligned} & \text { Survey } \\ & \text { Wt/tow } \end{aligned}$
1965	15,011	3,780	215	11,016	0.9	15.9
1966	15,343	4,008	345	10,990	1.1	11.1
1967	18,057	5,527	684	11,846	1.0	18.5
1968	21,045	6,360	836	13,849	1.4	11.7
1969	24,175	7,823	1,143	15,209	1.7	10.9
1970	22,347	7,812	1,182	13,353	2.1	17.1
1971	23,175	7,380	796	14,999	2.0	13.4
1972	19,704	6,564	662	12,478	2.6	31.3
1973	22,001	6,063	1,092	14,846	3.4	42.0
1974	25,290	7,426	1,220	16,645	3.9	11.2

${ }^{1}$ Weight in pounds.

3. Silver hake

Total U.S. Silver hake findings from Subarea 5 in 1974 decreased (Table 8). Better recruitment in the last two years has prevented further large declines in stock with increased catches, but has not permitted recovery (see Table 9) as indicated by research vessel surveys.

Table 8. U.S. silver hake statistics, Subarea 5 (metric tons, round fresh).

Year	Subarea 5 landings	Div. 5 Y landings	Food Fish Div. FZe landings	Landings/ day fished	$\begin{gathered} \text { Industrial } \\ \text { Div. } 52 \mathrm{w} \\ \text { landings } \end{gathered}$	$\begin{array}{r} \text { F Food Fish } \\ \text { Landings/ } \\ \text { day fished } \end{array}$
1965	41,809	22,605	11,169	11.3	8,035	4.4
1966	40,771	21,323	16,222	12.7	3,226	1.4
1967	30,986	14,390	12,692	9.3	3,904	3.4
1968	35,919	24,706	6,451	14.0	4,762	4.0
1969	20,333	14,609	1,654	4.9	4,070	4.6
1970	19,379	11,384	4,238	3.7	3,757	2.2
1971	13,332	8,263	3,069	2.6	2,000	3.4
1972	8,036	5,548	879	4.3	1,609	--
1973	15,976	8,348	5,704	7.2	1,924	--
1974	9,535	4,634	2,285	1.3	2,616	--

Table 9. Silver hake abundance indices (mean catch/tow in pounds) from U.S. autumn survey cruises.

Year			$\begin{array}{cc} \text { Subdiv. } & \text { 52e } \\ \text { (Georges Bank) } \\ \text { Spring Fall } \end{array}$		Subdiv. 5Zw-Div. 6A (So. New Eng1and) Spring Fall	
1963	-	58.31	-	7.9	-	11.5
1964	-	10.3	-	2.8	-	12.5
1965	-	17.4	-	3.3	-	16.8
1966	-	9.4	-	3.3	-	7.9
1967	-	5.3	-	2.3	-	9.8
1968	. 1	4.2	. 8	5.5	16.2	10.5
1969	. 4	5.4	1.2	3.7	8.4	5.1
1970	. 7	6.6	1.6	2.8	3.7	5.7
1971	. 8	6.1	1.7	2.7	8.2	10.1
1972	3.8	14.3	1.1	3.0	5.1	8.8
1973	1.6*	9.2	1.8*	3.8	2.6*	7.1
1974	16^{*}	8.3	.7*	2.4	3.7*	2.7

[^0]4. Redfish
U.S. landings of redfish from Subarea 5 decreased in 1974 (Table 10).

Table 10. U.S. redfish statistics, Subarea 5 (metric tons, round fresh).

Year	Total Subarea 5 landings	Div. 5Y (Gulf of Maine)		
	Landings	Days fished	Landings/ days fished	
1965	6,986	5,045	742	6.8
1966	7,204	4,719	429	11.0
1967	10,442	6,746	649	10.4
1968	6,576	4,060	292	13.9
1969	12,038	9,637	824	11.7
1970	15,534	13,551	1,473	9.2
1971	16,267	12,541	1,695	7.4
1972	13,161	7,150	1,132	6.3
1973	11,922	7,008	1,168	6.0
1974	8,690	5,464	1,012	5.4

The stock is maintaining itself at the lowered level of the past few years (Table ll).

Table 11. Redfish abundance indices from U.S. autum survey cruises.

Year	Div. SY (Gulf of Maine		Subdiv. 52e (Georges Bank)	
			+/tow	No/tow
1965	30.8	62.1	2.5	4.1
1966	69.9	96.8	4.4	11.4
1967	56.7	100.8	5.8	18.3
1968	95.3	154.7	7.7	11.3
1969	47.0	66.5	14.4	17.6
1970	74.5	96.3	10.2	13.3
1971	56.0	50.8	4.1	6.2
1972	55.0	54.8	8.5	10.8
1973	38.2	39.8	5.8	6.2
1974	58.2	51.0	4.1	6.1

$1_{\text {Weight }}$ in pounds.
5. Yellowtail

The U.S. total catch of yellowtail (including discards) from Subarea 5 in 1974 was about 2,000 tons (Table 12), below that of 1973. Yellowtail landings for food decreased slightly while landings of yellowtail for industrial purposes were negligible.

The Southern New England survey abundance indices remained low (Table 13).

Table 12. U.S. yellowtail statistics, Subarea 5
(metric tons, round fresh).

Year	Food landings	Landings/ day fished	Estimated discards	Estimated industrial landings	Total catch
1965	36,218	3.1	12,893	972	50,083
1966	28,656	2.0	8,253	2,364	39,273
1967	20,819	2.2	14,407	4,587	39,813
1968	28,645	3.0	10,627	3,939	43,211
1969	28,739	2.7	5,202	4,265	38,206
1970	29,825	2.5	10,689	2,095	42,608
1971	21,700	2.1	7,124	397	29,221
1972	23,886	2.1	3,100	327	27,313
1973	24,710	2.2	1,086	343	26,139
1974	23,145	1.8	993	22	24,160

Table 13. Yellowtail abundance indices from U.S. survey cruises.

Year	S. New No/tow	England (W. of 690 Wt/tow	Georges Bank No/tow	E. of 69 Wt/tow
1963	50.6	32.1	30.1	
1964	60.8	41.9	22.0	
1965	38.7	28.0	15.0	23.4
1966	50.3	20.8	14.8	15.7
1967	57.7	31.0	19.2	6.7
1968	40.2	22.1	25.6	13.0
1969	54.8	31.7	18.1	
1970	39.8	24.7	13.1	16.0
1971	41.7	20.2	15.2	8.6
1972	73.3	44.3	14.6	11.0
1973	7.9	5.0	13.1	10.9
1974	6.9			
				9.5
				6.3

$\mathbf{1}_{\text {Weight }}$ in pounds.
6. Red hake

Red hake landings by U.S. vessels from Subarea 5 in 1974 declined (Table

The 1974 autumin research vessel survey cruise indicated a decrease in stock abundance for all three subdivisions (Table 15).

Table 14. U.S. red hake statistics, Subarea 5 (metric tons, round fresh).

Year	$\begin{aligned} & \text { Subarea } 5 \\ & \text { landings } \end{aligned}$	Food Fish		Industrial Fish	
		Div. 5Y landings	$\begin{gathered} \text { Subdiv. } 5 z e \\ \text { landings } \end{gathered}$	$\begin{gathered} \text { Subdiv. } 5 Z_{w} \\ \text { landings } \end{gathered}$	Landings/ day fished
1965	13,493	192	385	12,916	9.1
1966	4,280	634	845	2,801	2.3
1967	5,759	92	169	5,498	5.6
1968	6,216	82	161	5,973	7.0
1969	4,923	140	225	4,558	8.2
1970	4,281	249	100	3,932	6.3
1971	2,783	268	111	2,404	8.4
1972	1,711	373	160	1,178	--
1973	2,940	286	77	2,577	--
1974	1,887	407	81	1,399	--

Table 15. Red hake abundance indices (mean pounds/tow)
from U.S. autumn survey cruises.

Year	Div. 5Y (Gulf of Maine) Spring		Fall	Subdiv. (Georges Spring		Bank) Fall
		10.9		Subdiv. 5Zw (So. New England) Spring		
1963	-	1.5	-	17.3		
1964	-	-	5.8	-	17.8	
1965	-	22.0	-	4.6	-	12.6
1966	-	1.6	-	33.1	-	6.4
1967	-	0.9	-	1.6	-	5.9
1968	2.0	0.3	0.6	3.0	4.3	9.7
1969	1.0	0.0	0.9	4.0	3.6	10.6
1970	0.9	0.3	1.9	2.2	5.3	8.6
1971	1.2	2.2	3.4	4.5	11.9	7.4
1972	2.9	4.1	2.4	2.6	12.2	14.6
1973	7.9	1.3	1.3	6.7	4.7	6.7
1974	4.4	1.1	0.5	3.4	3.5	1.2

7. Sea herring

The U.S. herring catch from Div. 5Y in 1974 increased (Table 16).
The U.S. catch of herring from Div. 52 and Statistical Area 6 decreased. The U.S. research cruises showed a decrease in abundance indices for the spring, 1974 (Table 17).

Table 16. U.S. sea herring landings from Subarea 5 (metric tons, round fresh).

Year	Subarea 5	Div. 5Y	Subdiv. 5Ze	Subdiv. SZw	Statistical Area 6
1965	34,495	33,634	861		
1966	30,589	29,365	1,224	-	-
1967	31,778	31,158	620^{1}	-	-
1968	42,083	41,476	9	598	-
1969	30,780	28,687	832	1,261	-
1970	30,484	29,181	272	1,031	-
1971	33,890	31,491	1,194	1,205	-
1972	40,473	38,211	11	2,251	-
1973	25,675	21,601	162	3,912	-
1974	32,392	29,356	171	2,866	529
					278

${ }^{1}$ Div. $5 Z$

Table 17. U.S. research cruise indices of herring abundance (mean number/tow).

	Autumn cruises Georges Bank	Spring cruises S. New England	Spring cruises Mid-Atlantic
1963	7.02	-	-
1964	1.13	-	-
1965	6.45	-	-
1966	10.41	-	-
1967	3.26	120.6	-
1968	1.36	45.8	17.4
1969	1.14	34.7	6.4
1970	0.66	4.1	1.2
1971	0.55	5.7	3.7
1972	1.06	7.2	2.6
1973	0.12	2.1	5.6
1974	0.12		1.3

8. Industrial Groundfish Fishery

New England landings for industrial purposes from Subarea 5 (predominantly Subdiv. 52w) decreased slightly in 1974 (Table 18).

Table 18. New England groundfish landings from Subarea 5 for industrial purposes (metric tons, round fresh).

Year	$\begin{aligned} & \text { Total } \\ & \text { landings } \end{aligned}$	Species composition (\%) for Subdiv, 5Zw				
		Silver hake	Red Hake	Flounder	Eel pout	Other
1965	33,990	20.4	38.0	6.9	1.8	32.9
1966	27,461	9.6	10.2	18.2	25.0	37.0
1967	37,400	10.2	14.7	18.5	18.9	37.7
1968	34,729	9.9	17.2	16.5	24.2	32.2
1969	26,813	9.5	17.0	21.3	20.8	31.4
1970	20,696	6.3	17.9	16.7	28.3	30.8
1971	8,823	10.1	25.8	6.6	33.7	26.3
1972	5,944	2.1	17.9	10.3	35.3	35.8
1973	11,854	7.4	20.8	10.4	26.2	35.2
1974	10,121	7.0	12.9	5.0	29.6	45.5

9. Sea Scallops
U.S. sea scallop landings decreased in 1974 (Table 19). Because of low abundance, the number of U.S. vessels fishing for scallops has declined significantly in recent years.

Table 19. U.S. sea scallop statistics, Subarea 5 (metric tons, weight of adductor muscle only).

Year	Landings	Days fished	Landings/ day fished
1965	1,509	2,156	
1966	901	1,001	0.7
1967	1,309	1,870	0.9
1968	1,163	1,938	0.7
1969	1,465	2,930	0.6
1970	1,553	2,588	0.5
1971	1,697	3,394	0.6
1972	1,347	2,694	0.5
1973	1,543	2,572	0.5
1974	1,153	1,647	0.6
			0.7

Annual assessments were made for over twenty stocks of fish in the ICNAF area. New assessments were made for redfish in Division 5Y and for mackerel in Subareas 3-6 inclusive.

Improved information on which to base assessment was obtained for cod in Statistical Area 5 through estimates of growth and mortality rates based on aging the survey collections made annually by research vessels.

Cooperative research with the Mathematics Department of the University of Wisconsin, Milwaukee, Wisconsin, was begun for improving assessment models. Results to date will be reported to ICNAF as a research document for 1975 on "Maximizing Total Yield in a Multispecies Fishery", and "A Graphical Method for Estimating Parameters and Sample Models of Fisheries".

B. SPECIAL RESEARCH STUDIES

1. Environmental Studies
a. Hydrographic Studies

Hydrographic studies in the ICNAF area have been conducted primarily by NMFS and the U.S. Coast Guard. A summary of activities in 1974 is presented in Summ. Doc. 75/7. Environmental observations by NMFS consist primarily of weather observations and temperature and salinity profiles recorded during trawl and plankton surveys, and these are listed in Table 20.

Table 20. Trawl and plankton surveys conducted by NEFC in the ICNAF area in 1974.

Cruise	Dates	Purpose	Biological Stations		$\begin{aligned} & \text { Temp } \frac{\text { G SaI }}{} \\ & \text { Profiles } \end{aligned}$		Area
			Traw1	Plankton	$\overline{\text { BT }}$	STD	
Alb 74-2	11-22 Feb	Larval Herring	-	71	82	-	Georges Bank
Alb 74-4	$12 \text { Mar - }$	Spring Groundfish	251	382	335	56	Hatteras to Nova Scotia
Alb 74-9	13-23 Aug	Zooplankton G Hydrography	-	64	180	38	Georges Bank
Alb 74-11	$\begin{aligned} & 20 \mathrm{Sep}- \\ & 14 \mathrm{Nov} \end{aligned}$	$\begin{gathered} \text { Fall } \\ \text { Groundfish } \end{gathered}$	287	308	518	59	Hatteras to Nova Scotia
Duchess $74-1$	7-14 Sep	Larval Herring	-	12	20	-	Western Gulf of Maine
Delaware D-74-12	8-16 Oct	Larval Herring	-	90	90	-	Western Gulf of Maine
Alb 74-13	4-19 Dec	Larval Herring	-	108	154	66	Georges Bank to Gulf of Maine

b. Plankton Studies

Fish eggs and larvae can be separated from invertebrate plankton by isopycnic sedimentation in gradients of colloidal silica. Equipment has been designed to automate this operation. Although at the current stage of development automatic sorting of ichthyoplankton is not feasible for all samples and situations, the system can appreciably reduce sorting time.

c. Larval and Juvenile Fish

The U.S. conducted five larval fish cruises, four of which were devoted to herring (Table 1), and U.S. observers also participated in 1974 larval herring cruises by France, Federal Republic of Gernany, and Poland. Results of the herring cruises are reported in research documents for the 1975 annual meeting. Studies on distribution of juvenile sea herring caught in U.S. bottom trawl surveys are also reported in a research document.
d. Trawl Surveys

Standard spring and fall groundfish surveys were again conducted in 1974 by NEFC in cooperation with the Middle Atlantic Coastal Fishery Center in New Jersey. U.S. observers also participated in surveys conducted by other countries in SA's 5 and 6, as follows:

1) Spring juvenile herring survey (FRG) and hydroacoustic experiments (U.S.S.R.).
2) Joint U.S.-U.S.S.R. fall groundfish surveys by Albatross IV and Belogorsk, and a fall juvenile herring and mackerel survey by Poland on the Wieczno. The results of these surveys are reported in a number of research documents.
e. Other Environmental Studies

The quantitative food habits of 20 species of fish collected from 1969 to 1972 (by Albatross IV) are being analyzed and will be included in an ICNAF document.

A special study on the diets of cod, silver hake, and haddock emphasizes areal, seasonal, and sexual differences in the diet of each species. The food habits in this subarea are compared to those from Georges Bank, Gulf of Maine, Southern New England, and the Middle Atlantic.

Approximately 500 fish of selected species are collected annually as part of an ongoing monitoring survey. This survey will monitor the food habits of 17 indicator species, to observe diet trends over long time periods.

Research projects in the ICNAF area and inshore waters were carried out by the Northeast Fisheries Center and Sandy Hook Fisheries Center in cooperation with bordering states, universities and private institutions. A review of the physical oceanography of Massachusetts Bay was completed in 1974 under contract with the Woods Hole Oceanographic Institution. A three-year program of seasonal sampling of ichthyoplankton was begun at 50 stations in Cape Cod Bay using the standard bongo nets. The first year of intensive study of the oceanography, sedimentation and water quality in the waters off Hudson Canyon in the New York Bight has been completed by several research elements of NOAA.

2. Biological Studies by Species

a. Gadoids and Selected Species

Studies of spawning and fecundity in the Northwest Atlantic were continued with emphasis on haddock, cod, pollock, and yellowtail flounder. Observations on spawning and collections of fecundity samples were obtained off southern New England and southern Georges Bank March 28 to April 11 and northern Georges Bank, Gulf of Maine, Browns Bank and the Scotian Shelf, April 16 to May 5.

Summarized in Table 21 are percentages of haddock, cod, and yellowtail females in a particular maturity category for different geographic areas. The category "spent-recovering" includes those females in which the gonad was either recovering from recent spawning or was preparing to recycle for next year's spawning.

Off southern New England and on Georges Bank, cod were near the end of spawning, and yellowtail were just beginning to spawn. Haddock were half way through spawning; however, the "spent-recovering" category may be too high as will be explained below.

On Browns Bank and off Western Nova Scotia 15 percent of the haddock were spawning, and 41 percent were past spawning; 0 percent of the cod were spawning, and 81 percent were past spawning. For other areas, eastern Nova Scotia, Bay of Fundy, Gulf of Maine, and the Massachusetts Bay area insufficient maturity data were collected except for cod in the Massachusetts Bay area (see Table 21).

Table 21. Percentage of ovarian stages of mature females.

Area	Dates	Species	Ripening	Spawning	Spent Recovering
So. New England	Mar 28-Apr 4	Cod	6	7	87
		Yellowtail	85	1	11
So. Georges Bank	Apr 4-8	Haddock	31	3	66^{*}
		Cod	3	3	94
		Yellowtail	83	1	16
No. Georges Bank	Apr 18-21	Haddock	34	9	59^{*}
		Cod	1	5	94
Mass. Bay Area	Apr 17-19	Cod	33	8	59
Browns Bank \&	Apr $22-27$	Haddock	44	15	41
W. Nova Scotia		Cod	19	-	81

* Based upon visual examination, not histological study.

The 1974 haddock spawning season was characterized by two events:
(1) the almost complete absence of the 1962-63 year class in Georges Bank samples, and (2) the preponderance of 2 and 3-year olds of the 1971-72 year classes, which made up 85 percent of the age composition on Georges Bank and around 40 percent on Browns Bank and western Nova Scotia.

The average size of the 1971 and 1972 year classes on Georges Bank was 41.3 cm and 49.6 cm respectively. Since female haddock on Georges Bank are known to mature at about 42 cm , we would expect some of the smaller females to spawn in 1974. We, however, had considerable difficulty in distinguishing the immature stage from the one that was possibly spent-recovering, thus indicating spawning. Therefore, we think the percentage for Georges Bank females is biased upward. Because of the difficulty of separating these two stages, we preserved a number of samples for future histological determination,

Fecundity estimates for Georges Bank haddock have been completed for 1969, 1971, 1972 and 1973. The 1970 material is expected to be ready early in 1975, and a summary document is planned for ICNAF in 1976. Fecundity material for pollock was collected on the fall groundfish survey and for yellowtail flounder in the spring survey.

The growth and survival of larval haddock in relation to the concentration of their planktonic prey was studied in the aquarium at the Narragansett Laboratory, where it was found that when newly hatched haddock (Melanogranmus aeglefinus) larvae were fed zooplankters at nominal rates of $0.5,1.0$, and $3.0 / \mathrm{ml}$ at 7 C , they grew at similar rates. After 6 weeks, they averaged $8.7,10.0$, and 11.2 mm in standard length and 810,1300 , and $1728 \mu \mathrm{~g}$ in dry weight, and had condition factors of $1.25,1.22$, and 1.32. When fed at 0.1 and 0.01 plankters $/ \mathrm{ml}$, all larvae died in 3 and 2 weeks; at 0.5-3.0 plankters/m1, daily instantaneous mortality coefficients were 0.06-0.02 during 6 weeks. Larvae began feeding 2 days after hatching, and the point of no return after they were deprived of food was 6 days after hatching, yolk absorption being completed on day 6 or 7 . All larvae deprived of food until 8 and 10 days after hatching, although initiating feeding, did not survive another 4 days. Prey concentration also influenced delayed feeding with greater percentages of larvae able to initiate feeding at higher plankton levels on the point-of-no-return day.

b. Winter flounder (Pseudopleuronectes americanus)

Studies of the influence of plankton concentration on survival of winter flounder larvae showed that percentages surviving at $3.0 \mathrm{pl} / \mathrm{ml}$ were much greater than at $1.0 \mathrm{pl} / \mathrm{ml}$, and that $0.5 \mathrm{pl} / \mathrm{ml}$ is a limiting concentration. Growth appeared to be less affected than survival by plankton concentration. Embryos of summer flounder incubated in the ranges $8-26^{\circ} \mathrm{C}$ and $0.5-45.0 \%$ had best hatching percentages at $14-20 \mathrm{C}$ and $25-30 \%$. Greatest mortalities at all factor combinations occurred
in the blastula stage. Metabolic rates and growth rates from hatching to metamorphosis were determined for scup and summer flounder at respective temperature ranges of $15-21 \mathrm{C}$ and $14-18 \mathrm{C}$. Digestion rates for sumer flounder have been determined at several temperatures.

Studies of the use of hormones to induce ovulation and spermatogenesis in adult species and the use of cryogenetic techniques for storing sperm continued.

c. Deep Sea Red Crab (Geryon quinqueders)

A quantitative survey of the deep sea red crab, Geryon quinquedens, was conducted along the continental slope of northeastern United States from offshore Maryland to eastern Georges Bank (Subarea 5 and Statistical Area 6). This work was conducted in July, 1974, from aboard the research vessel Albatross IV. Water depths sampled ranged from 125 to 900 fathoms The geographic and bathymetric distributions and estimates of population size of the red crab were determined by means of in situ photographs of the sea bottom obtained with a sled-mounted photographic system. Additionally, samples of red crabs were collected with a 4.9 meter semiballoon otter trawl, for the purposes of ascertaining size composition, sex ratios, molting stages, and information pertaining to spawning.

Statistical Area 6

A. STATUS OF THE FISHERIES

Please refer to Table 1, Page 1 for finfish and sea scallop landings in Statistical Area 6.

B. SPECIAL RESEARCH STUDIES

1. Biological Studies by Species

Deep sea red crab (for activities, please see Subarea 5).

2. Miscellaneous Studies - Food Habits of Fish

The quantitative food habits of 42 species of fish collected from this statistical area, 1969 to 1972, by the Albatross IV, are presently being analyzed.

Herring and mackerel collected from this area are included in the competition study (see Subarea 5).

The food habits of cod, silver hake, and haddock were determined, based on the analysis of 1,100 fish from this area.

Some 800 individuals of the major fish species are collected annually as a part of the ongoing food habits monitoring survey.

3. Gear and Selectivity Studies

The new candidate trawl for groundfish surveys, a modified, highopening Yankee No. 41, designed, tested and measured during 1973, was employed for "interim use" during the Spring Groundfish Survey in ICNAF Subareas 4, 5, and 6. Additional field trials were made to calibrate this trawl against the old standard No. 36; formulation of catch coefficients by species remains to be completed.

Cooperative investigations into the nature of acoustic backscattering from fishes and other objects in sea water were conducted along lines agreed to during ICNAF meetings in January and June 1974. Cooperative cruises were conducted aboard the U.S.S.R. R/V Khronometer in March-April 1974, and the Polish R/V Wieczno in October 1974, and were reported in
included in an ICNAF document.
A preliminary study designed to investigate competition for food between herring and mackerel has been completed. Approximately 500 fish were collected for this research in the spring of 1974 by the research vessels Albatross IV and the Walther Herwig.

The food habits of cod, silver hake, and haddock were determined from the analysis of over 1,400 fish.

Stomach contents of approximately 800 fish are collected annually from this subarea as part of the ongoing fish food habits monitoring survey.

b. Manned Undersea Research

Two major missions were successfully completed in 1974; a megabenthic crustacean cruise in July with the research submersible Nekton Gamma and a herring spawning and egg bed survey in October and November with SCUBA divers, bottom grab, and remote controlled TV sled. A total of 40 submarine dives were made at 6 submarine canyons on the outer New England Continental Shelf and Georges Bank to assess the distribution, abundance, behavior and general ecology of lobsters, crabs and shrimps. Further definition of the problem of derelict lobster pots was made.

During the fall operation the dive team discovered two herring spawning grounds on Jeffreys Ledge, Gulf of Maine. Detailed bottom samples were taken and photographs made along with bottom grabs to define the areal distribution of the egg beds. Estimates of various parameters pertaining to the dynamics of the egg bed were made by the divers through direct observations and in situ sampling. The success of this fall mission has resulted in a proposed joint international Man-in-the-Sea Program using the underwater laboratory Helgoland to conduct a complete and detailed ecological study on herring spawning and egg bed dynamics.

c. Plankton Sorting Center

The U.S.A.-Poland Cooperative Plankton Sorting and Identification Center opened in Szczecin, Poland in December 1974. An advisory committee of three representatives from Gdynia and Szczecin, and three from the U.S.A. was formed on December 10, 1974. The committee will meet at Szczecin in June 1975 to review progress and to decide on future activities.

d. Age Determination of Silver Hake (Merluccius bilinearis)

The lack of agreement between age-1ength tables prepared by the U.S. and Soviet researchers for silver hake emphasizes the need for standard methods of aging to secure the greatest probability of accurate ICNAF Res. Doc. No. 74/113, Serial No. 3354; Yudanov, I. I., J. B. Suomala, Jr., V. M. Vorobyov and K. A. Smith. Preliminary report of the first joint U.S.A.-U.S.S.R. hydroacoustic experiment in the ICNAF convention area, 11 March-15 April 1974 (6 pages). Additional cooperative work is scheduled for 1975.

Field experiments on means to avoid destructive fishing of lost lobster pots ("ghost pots") were concluded in 1974. This work included observation of trap-related lobster behavior, development of calibrated escape panels, and testing of degradable materials and panels designed to release all entrapped lobsters, crabs, and other animals upon elapse of desired time periods. Analysis and manuscript work are in progress.

A shrimp trawl mesh-selection project was concluded under the StateFederal Management Program. Under this project a trawl-mesh regulation for taking Pandalus borealis shrimp from Gulf of Maine waters was established. The current mesh regulation provides a minimum mesh size of $13 / 4^{\prime \prime}$ stretched mesh measured between knots in the trawl body and 1 1/2" in the cod-end as an interim measure. A revised regulation for a minimum of $13 / 4^{\prime \prime}$ body and $13 / 4^{\prime \prime}$ cod-end was proposed for promulgation as of June 1975.
4. Misce11aneous Studies
a. Food Habits of Fishes

The quantitative food habits of 33 species of fish collected from
1969 to 1972 (by Albatross IV) are presently being analyzed, to be results. Because whole otoliths often exhibit opacity that obscures annuli, U.S. researchers have experimented with thin sections cut transversely in the nucleus area of the otolith. The study is reported in Research Document 75-13.

[^0]: *These spring cruises were made with the Yankee \#41 trawl so these values have been adjusted to the normal \#36 trawl.

