International Commission for

the Northwest Atlantic Fisheries

Serial No. 3499
 (B.g.26)
 ANAUAL MEETING - JUNE 1975
 Report of the Herring Working Group April 1975

ICNAF Summ. Doc. $75 / 19$

Contents

\qquad

3. Surveys

(b) Spring trawl surveys for pelagic speciea ... 4
4. Biological Information
(a) Recruitment mechanisms .. 4
(b) Tagging results .. 5
(c) Growth studies ... 5

5. Effect of Juvenile Fisheries on Herring Yields .. 5
6. Assessments
(a) Div. 4V-4W(a) herring

Catch statistics and catch composition .. 6
Catch per unit effort 6
Management considerations 6
(b) Assessment for Div. $4 W(a)$ and $4 X W(b)$ combined

Catch statiatics and catch composition ... 7
Year-class size and estimates of F.. 7
Catch predictions for 1975 and 1976 .. 7
(c) Div. 4WB(b) assesssent (Southwest Nova Scotia)

Catch statistics and catch composition . 8
Year-class size and estinates of F.. 8
Catch predictions for 1975 and 1976 ... 8
(d) Div. 5Y assessment

Ages 7 and older .. 9
Ages 5 and 6 (1968 and 1969 year-classes) ... 9

Age 3 (1971 year-class) .. 9
Recruitment in 1975 (1972 year-class) and 1976 (1973 year-class) 9
Estimate of stock size .. 10
Recommended TAC level for 1976 10
(e) Div. 52 and Stat. Area 6 (Georges Bank atock)

Catch statiatics .. 10
Indices of abundance . 10
Estimation of recruitment and fishing mortality 10
Age 5 and older 10
Age 4 (1970 year-class) 10
Age 3 (1971 year-class) 11
Recruitment levels of the 1972 and 1973 year-classes 11
The TAC level for 1976
Assumptions 11
Results 11
7. Future Research 12

1. Introduction

The Herring Working Group met during 8-11 April 1975 at the Northeast Fisheries Center, Woods Hole, USA with representatives from Canada, Federal Republic of Germany, German Democratic Republic, Poland, USSR, UK, and USA. The main task of the Group was to prepare assessments and recommend TAGs to the commission for the Chedabucto Bay-Cape Breton (Subdiv. 4Vn-Div. $4 \mathrm{H}(\mathrm{a})$), Nova Scotia (Div. $4 \mathrm{XW}(\mathrm{b}$)), Gulf of Maine (Div. 5Y), and Georges Bank (Div. 5Z + Stat. Area 6) herring stocks. In addition, the Group gave consideration to the status and results of larval and juvenile surveys. Possible stock interactions based on recent tag reconeris and the influence of temperature on the interaction of recruitment mechanisms for herring was also discussed. The following research documents were considered during the course of discussion: larval and juvenile surveys (Res .Docs. 75/33, 47, 49, 50, 66, 67, 71); assessments (Res .Docs. 75/17, 33, 36, 37, 38, 39,56). In addition, over twenty working papers were discussed and incorporated into the results presented below.

2. Fishery Trends

Table 1 lists the provisional herring catches by country and area for 1974. The total 1974 catch was 430,000 tons, 45% of the peak 1969 catch of 965,000 tons, and 897 of the 1973 catch of 485,000 tons. Catches from the Gulf of St. Lawrence-Newfoundland stocks (Subarea 3 and Div. 4RST) declined from 85,000 tons in 1973 to 61,000 tons in 1974, mainly due to continuing poor recruitment and anomalous ice conditions in the winter fishery along the south coast of Newfoundland. Catches from the Div. $4 \mathrm{VW}(a)$ stocks increased from 31,000 tons in 1973 to 44,000 tons in 1974, reflecting the appearance of the 1972 year-class and favourable ice conditions in the Div. 4W(a) winter fishery. The TAC for this stock complex was 45,000 tons in 1974.

The total catch in Div. 4 X and $4 \mathrm{~W}(\mathrm{~b})$ (south of $44^{\circ} 52^{\prime} \mathrm{N}$) increased slightly from 134,000 tons in 1973 to 142,000 tons in 1974. The catch from Grand Mandan Banks decreased from 25,000 tons in 1973 to 1,000 tons in 1974.

Catches in the Gulf of Maine (Div. 5Y) were 37,000 tons in 1974 compared with 32,000 tons in 1973 and 62,000 tons in 1972. In the Georges Bank fishery (Div. $52+$ Stat. Area 6), the 1974 catch of 146,000 tons was about 72% of the 1973 level.

In all areas under quota regulation in 1974, the 1970 year-class made up the major proportion of the catches.

3. Surveys

(a) Larval surveys

Results of the 1974-75 larval herring surveys in the Georges Bank-Gulf of Maine area were reviewed. Herring spawning in September was indicated in nearshore regions of the northern and eastern parts of the Gulf of Maine from larval catches by Cryos (Res .Doc. 75/71) and the Duchess II (Res .Doc. 75/49). Spawning on Georges Bank and Nantucket Shoals had just begun by the middle of October (as indicated by small catches of larvae by Wieczno) and then increased substantially in the latter half of October as shown by Prognoz catches (Res .Doc. 75/66). As in previous years, peak spawning appeared to be later on Nantucket Shoals than on the northeast part of Georges Bank, but spawning in both areas in 1974 appeared to start later than in 1973. Results of the November (Anton Dohrn) and December and February (Albatross IV) cruises in Div. 5 Z indicated a geographic distribution of larvae similar to that of previous years, and abundance was of the same order of magnitude as in 1973 (Res .Docs. $75 / 49,67$). The production of larvae was considerably higher in both 1973 and 1974 than it was in 1971 and 1972, presumably reflecting the increase in spawning stock from recruitment of the 1970 year-class.

A special study of the vertical distribution of recently-hatched herring larvae was conducted by the USA at a single site in 80 m of water on northeastern Georges Bank. The study indicated a concentration of larvae in the $30-50-\mathrm{m}$ layer and some evidence of diurnal movement (Res. Doc, 75/50). Diurnal movements of larger larvae is implied by the fact that neuston hauls in the December and February cruises caught higher numbers of large larvae than did the Bongo hauls at corresponding stations (Res .Doc. 75/49).

The Working Group discussed the general value of the coordinated larval herring program and agreed that ICNAF should continue monitoring the production and survival of herring larvae from the spawning populations in Div. 4X and Subarea 5, at least for several more years. Such a time series is necessary for a meaningful evaluation of the stock/recruitment relationship for these stocks. However, it was suggested that additional larval survey coverage be attempted in March or April to improve knowledge of the over-winter survival of
larvae and improve the likelihood for a useful l-group index of year-class strength. The larval sampling done concurrently with the spring bottom trawl surveys (auch as on Walther Hemwig) should be continued, and, in addition, special larval surveys with large Bongos or midwater trawls should be considered. Also, it was noted that investigations directed toward identification of the mortality mechanisms (e.g. prey-predator studies) should be encouraged in conjunction with the monitoring surveys to provide ingight necessary for evaluation of stock/recruitment models.

(b) Spring trawl surveys for pelagic species

The Working Group reviewed the results of the coordinated bottom trawl surveys which have been conducted each spring (March-April) since 1973 in parts of Subarea 5, Stat. Area 6, and Div. 4x. Mean numbers per haul of herring at each age were calculated for all spring surveys from 1973-75, and also the 1972 Albatross IV spring survey, and these are documented in Table 2. Attention was focused on the catches of ages $2-4$, in an attempt to estimate the relative strength of the 1971 , 1972 and 1973 year-classes in relation to the 1969 and 1970 year-classes. Primary emphasis was given to the Walthor Herwig surveys in Div. $5 Z$ and Stat. Area 6, since these were considered to represent the best available measure of pre-recruit year-classes because: (1) these surveys covered a substantial portion of the usual geographic range of juvenile herring, (2) large numbers of herring were caught, and (3) there was a comparable time series of three years of data. Sampling by the Walther Herwig in Div. 4 X was considered too sparse to provide a reliable measure of yearclass abundance there. The Albatross IV series covers the entire area from Cape Hatteras to Nova Scotia (including Gulf of Maine), but there is less confidence in the Albatross IV data because the catches of herring are very small. Nevertheless, the $A l b a t r o s s i V$ data on relative strength of recent year-classes is consistent with that from the Walther Herwig, and results for both vessels in all divisions are given in Table 3 to facilitate comparison of year-classes.

In Div. 5Z-Stat. Area 6, both the Walther Herwig and Albatross IV aurveys showed the 1971 and 1972 yearclasses to be very weak relative to the 1970 year-class, based on catches of ages 3 and 4 herring, and both surveys suggest that the 1973 year-class was even weaker than the 1971 year-class as indicated by catches of 2-year-old fish (Table 3). The strength of the 1969 year-class, as indicated by Div. 5z-Stat. Area 6 catches of 4-year-old herring, appears to be similar to that of the 1971 year-class based on Walther Herwig data, and about one-third the strength of the 1970 year-class based on Albatross IV data. Comparisons of the relative sizes of the 1969-1972 year-classes are sumarized in Table 4 in terms of the ratios of catches of each yearclass at a given age to the catches of the 1970 or 1971 year-classes at the correaponding age. With the exception of the Albatross IV data for the 1969 year-class, both series of surveys in Div. 52-Stat. Area 6 show the 1970 year-class index to be at least 20 times as large as the indices for the other year-classes. Similarly, the AZbatross $I V$ indices for Div. $4 X$ and $5 Y$ show the 1971-1973 year-classes as smaller than the 1970 year-class, although the differential is not as great as in Div. 5Z-Stat. Area 6. On the basis of these data the Working Group considered that the best estimate was to equate the strength of the 1971 and 1972 yearclasses to that of the 1969 year-class.

The validity of the index for the 1973 year-class is still open to considerable question because of uncertainty regarding availability of 2-year-old herring to bottom trawls and their distribution by time and area. The problem is complicated by the fact that there appears to have been very few 2-year-olds in Div. 5Z-Stat. Area 6 since 1973, whereas they have been found consistently in Div. 4X during winter and spring surveys by Albatross IV since 1964. In the coordinated surveys since 1973, both the Walther Herwig and AZbatross IV caught many more 2-year-olds in Div. 4 X than in Div. 5Z-Stat. Area 6 (Table 2). It was suggested that there may have been a shift in distribution of 2 -year-olds which might be related to the apparent warming of the waters in the region. In any case, the Working Group concluded that until there is a better understanding of the availability of 2-year-olds, it will not be possible to develop a firm prediction of yearclass strength at that age.

With respect to future surveys, the Working Group noted that the available time serles was still too short to provide an adequate evaluation of the potential of spring surveys for pre-recruit estimates. Results to date are sufficiently encouraging that the Group felt that spring series should be continued and even expanded to include the Gulf of Maine with greater sampling by high-opening bottom trawls. However, it was noted that more complete analysis of the existing data was desirable, using transformed data to achieve more efficient atatistical estimates. Also, it was noted that to avoid wasting ship time careful evaluation of age-specific distribution patterns was needed to improve the design and analysis of future surveys.

The proposed schedule of surveys for both larval and juvenile herring in autumn 1975 and spring 1976 is given in the Report of the Biological Surveys Subcomittee (Suman. Doc. 75/17).

4. Blological Information

(a) Recruitment mechanisms

There was considerable discussion of the recruitment studies on herring and mackerel in the Gulf of Lawrence (Res.Doc. 75/33). Stock/recruitment relationships were derived for both herring and mackerel populations, based on planktonic eggs and larvae and virtual population estimates of spawning stock size. For both species a dome-shaped stock/recruitment curve was indicated, with a rapidiy declining right-hand limb beyond optimum stock sizes and a deciining left-hand limb at low stock sizes.

With respect to herring, it was found that the catch of larvae was related to the spawning stock biomass and to temperature. The recruitment of age $2+$ therring is related to both total pelagic biomass and the number of larvae. The total pelagic biomass seems to control the degree of density dependence. Although these results were determined in the Gulf of St. Lawrence, the general form of the relationships may be applicable to other herring stocks. Much additional research will be required to confirm assumptions regarding controlling mechanisms, as well as the predictive capability of the models. However, the resulta to date suggest that we may be on the verge of gaining significantinew insight into the stock/recruitment mechanisms of herring and mackerel, including both blotic and abiotic interactions invoiving the two species.

(b) Tagging reaulta

Canada reported tagging 35,931 herring along both sides of the Bay of Fundy in the sumarer of 1974 using yellow external tags (Res.Doc. 75/38). While the majority of recoveries (total of 1,127) showed movement within the Bay of Fundy area between New Brunawick and Nova Scotia, some recaptures were made south of Cape Cod (off Rhode Island) and as far east as Chedabucto Bay. These results suggest some degree of interaction of Div. 4X herring with those in Div. $4 \mathrm{~W}(\mathrm{a})$ and Subarea 5 . The consequence of such interaction to assessments and TAC recommendations was conaidered and, while results were judged preliminary, a combined Div. 4 XW assessment was completed (see Section 6). Canada indicated a continuing tagging program with planned releases in Div. $4 \mathrm{~W}(a)$ and Subdiv. 4 Vn in the winter of $1975 / 76$ and advises that new information on the relationship of the DIv. $4 \mathrm{~W}(\mathrm{a})$ and Subdiv. 4 Vn fisheries could be available for consideration at the June 1976 Annual Meeting. Member Countries are advised of possible tag recoveries in Subareas 4 and 5 and requested to send tags to: Biological Station, St. Andrews, New Brumsick, Canada EOG 2X0.

(c) Growth studies

Analysis of mean weights at age indicates a significant increase in mean weight beginning with the 1967 year-class in the Div.: 5 Y juvenile fishery and in the Div. 5z-Stat. Area 6 fishery. An increase in mean weight-at-age from previous years for all year-classes was thus required in the Subarea 4 and Div. $5 \mathrm{Z}-\mathrm{Stat}$. Area 6 assessments. This was not required for the DIv. SY adult fishery assessment as previous mean weights were apparently too high.

USSR research on growth rates of Subarea 4 herring (Res.Doc. 75/56) indicates a lower value of K in the von Bertalanfy growth equation when compared to that of Georges Bank herring ($0.24 \mathrm{vs}, 0.43$).

(d) Spawning times

Results of the investigation of spawning periods for Georges Bank herring (Res.Doc. 75/37) provided estimates of the onset of spawaing in 1972-74. Onset of spawning was defined as the date when catch per tow of herring in maturity stages VI and VII reached a sustained maximum. Probable onsets of spawning in 1972, 1973, and 1974 were $24-26$ September, 24 September, and 2 October, respectively. Variability in the time of spawning may be attributed in part to changes in the temperature of water masses in Georges Bank. It is anticipated that the above dates will be incorporated into the analysis of larval surveys.

5. Effect of Juvenile Fisheries on Herring Yields

Although the stock relationship between herring exploited in juvenile fisheries and those in adult fisheries is not clear, the Herring Working Group was concerned about the potential of excessive mortality being placed on the herring resources from both the juvenile and adult fisheries. This has not yet been fully evaluated for all the Canadian fisheries, but the very preliminary assessment given below fllustrates the importance of the juvenile fisheries to the overall conservation of the herring resources. Catches from the Nova Scotia herring fishery in Div. $4 \mathrm{~W}(\mathrm{~b})$ and 4 X were not included in the analysis because the data for this area were available only since 1965. The catches of juvenile herring from both Maine (Div. 5y) and New Brunswick (Div. 4X) were available since the mid-50's and were combined with catches of herring from the Jeffreys Ledge (Div. 5Y) and the Georges Bank fisheries (Div. 5Z-Stat. Area 6) (Table 5).

Beginning with data in 1973, a cohort analysis was applied to each year-class with starting F's of 0.4 , $0.6,0.8$, and 1.1 . In 1971 and 1972 average $F^{\prime} s$ over ages $4-9$ were generally in excess of 0.7 and averaged 0.95 . Since the values were increasing, a starting figure of 1.1 was used in 1973 for ages 6 and older. For year-classes 1968 and 1969 the \log catches were extrapolated and a range of F's applied in the last year. The resulting fishing mortalities are shown in Table 6, and the stock aizes in Table 7. Fishing mortality rates were averaged over year-classes by age for two periods of 1956 to 1973 , and 1961 to 1973 . The latter period covers the period of the Div. 5Z-Stat. Area 6 fishery. These rates are given in Table 8 for ages 1 to 9 with the total catches and average annusl catches for each age. The fishing mortalities for the entire period from 1955 to 1973 are $0.09,0.72$, and 0.41 for ages $1-3$, respectively, and for the period of 1961 to 1973 are $0.09,0.47$, and 0.28 for ages $1-3$, respectively.

The mortality rate on age 2 herring declined aubstantially during the 1960 's from the middle 1950 's, but still accounted for an average catch of 45,000 tons annually during 1961-75. These fish, if caught at age 5, would have produced a catch averaging 176,000 tons per year (assuming the mean weight given in Table 8 and $M=0.2$). This is equivalent to 94% of the catch in tons taken from the Georges Bank stock over the
period of 1961-73 or approximately a doubling of the catch.

More important than increasing the catch over that period is the long-term effect of the juvenile fisheries on the size of the stock. Beginning with the stock in 1961, three sets of fishing mortalities were applied to the stocks for each year until 1972. One aet was the average $\mathrm{F}^{\prime} \mathrm{s}$ for each age as given in Table 8 as calculated from 1956-73. The second set was the sawe as the first, except an F of 0.25 was placed on age 2 and 3 herring. The third set is the same as Set 1 , except F was zero on age 1 and age 2 herring and reduced to 0.13 for age 3. The F of 0.13 is that placed on age 3 herring by the adult fishery. This last set, therefore, assumes that no juvenile fishery exists. Recruitment was assumed at age 1 of 12,029 million in 1961 , 7,862 million in 1962, etc., the calculated year-class size at age 1 (Table $6-0.119,0.263$, etc.) was 0.286 Each annual mean F was taken proportional to 0.286 and raised by multiplying by 0.72 which is the F at age 2 given in Table 8. This gave the F at 100% used for each year (Table 9). Percentage coefficients applied to F for each age were determined by setting 0.72 equal to 1.0 and taking the percentage each F is of 0.72 for each age. The results of the three sets of mortalities is given in Table 9 and Fig. 1. With Set 1 (a rough simulation of the present situation), the stock declines to 216,000 tons by 1972 and givea a catch of 113,000 tons in that year. With F reduced on age 2 and 3 herring, the stock size is 506,000 tons by 1972 with a catch of 223,000 tons in that year. With no fishing mortality on agea 1 and 2 herring and the portion of F on age 3 fish from the fuvenile fishery reduced to zero, the stock size by 1972 is 938,000 tons providing a catch of 372,000 tons in that year. The stock declined after 1968 due to reduction in recruitment (Fig. 1), but the reduction of F on the young fish maintained a stock size of $300,000-400,000$ tons. Over the period of 1961 to 1972 the average annual catch would have been: Set 1 - base situation - 199,000 tons; Set 2 - ages 2 and $3, F=0.25-289,000$ tons; and Set 3 - no juvenile fishery $-375,000$ tons.

The catches from the juvenile fisheries (Div. $4 \mathrm{~W}(\mathrm{~b})$ and 5Y), however, have declined from the mid-1950's (Fig. 2) so that the average juvenile catch for 1970-73 (including all age fish) was only 44,000 tons. The Div. 5 Y juvenile fishery is also catching a greater percentage of older fish. In 1974 , 50% of the " $j u v e n i l e$ " catch by weight consisted of fish age 3 and older.

6. Assessments

(a) Div. $4 \mathrm{~V}-4 \mathrm{~W}(\mathrm{a})$ herring

Catch statistics and catch composition. The total catch in Div. $4 \mathrm{VW}(\mathrm{a})$ in 1974 was 44,000 tons (45,000ton TAC), up 43% from 1973. The Canadian catch during the $1974 / 75$ season (November to January) was limited by quota restrictions to 43,552 tons.

The removals at age from Subdiv. 4Vn and Div. $4 \mathrm{~W}(\mathrm{a})$ for the Canadian fishery in 1974/75 are given in Table 10.

The 1970 year-class again sustained the fisheries in both areas, comprising 51% and 52% in Subdiv. 4 Vn and Div. 4W(a), respectively. The 1972 year-class made a atrong appearance in Div. 4W(a), comprising 24\% of the 1974/75 catch.

Catch per unit effort. The annual weighted mean CPUE values for Subdiv. 4Vn and Div. 4W(a) were 76.4 and 146.5 tons, respectively, and indicate the radical difference in the trends for CPuE in the two areas (Fig. 3). In Subdiv. 4Vn the CPUE has decreased by 34% in the last three years, while for the same period in Div. 4W(a) it has increased by almost 97%.

Management considerations. Recoveries from the 1973/74 tagging studies in Div. 4X suggest that different stocks are being exploited in Div. $4 \mathrm{~W}(\mathrm{a})$ and Subdiv. 4Vn (gee Section 4). No tag recoveries were made in November and December 1974 when the majority of the Subdiv. 4 Vn fishery occura in the Sydney Bight area. In January the fishery is traditionally concentrated in Div. $4 W(a)$ with only a relatively small fiahery occurring in Subdiv. 4 Vn near the boundary of DIV . $4 \mathrm{~W}(a)$ and Subdiv. 4 Vn . All of the recoveries (43) were made in January, most being taken in the Chedabucto Bay area (40) and the few returns reported from Subdiv. 4 Vn were taken off Gabarus Bay near the boundary line between these two areas.

These facts would suggest that the Subdiv. 4Vn fishery should be regulated separately from the Div. 4W(a) stock and, in view of the continuing decline in CPUE, a decrease in the catch level from the $1974 / 75$ catch of 16,000 tons should be considered for Div. 4 V .

The tagging results indicate a strong relationship between herring from the two fisheries of Div. $4 \mathrm{~W}(\mathrm{a})$ and Div. 4XW(b). Furthermore, although Div. $4 \mathrm{~W}(\mathrm{a})$ fiah are autum spawners, Canadian larval surveys in 1974 in October-November in Div. 4VW found no larval concentrations; this indicates no spawning grounds on the eastern Scotian Shelf which would support a fishery of this size. Considering the lack of data upon which the original management units were determined and the information now available, it is advised that the Div. 4W(a) fishery be assessed as part of the Div. 4XN(b) stock.

The number of tag returns and geographic location of these returns suggest that the Subdiv, 4Vn fishery may exploit two different groups of fish, one in Sydney Bight and another off Gabarus Bay which is related to the Div. 4W(a) fishery. Additional tagging studies are planned by Canada for 1975/76 and should clarify the relationships involved.

This adjustment in the management unit would leave Div. $4 V$ to be managed separately from Div. $4 W(a)$. In view of the declining CPUE (Fig. 3) in Subdiv. 4Vn, decrease in the catch level should be considered. No analytical assessment is available on this fishery; the average catch for the last three seasons has been about 16,000 tons and a reduction to about 11,000 tons would seem appropriate for 1976.

(b) Assessment for Div. $4 W(a)$ and $4 \times W(b)$ combined

Catch statistics and catch composition. The total catch in 1974 for the Div. 4XW fishery was 173,000 tons. The 1970 year-class comprised 67% of the catch.

The catch composition from 1969-75 for Div. $4 W$ (a) is given in Table 11. These removal figures are from the Canadian fishery during the years 1969-73; in 1974 the USSR catches were included as being part of the Div. 4XW stock. Catches in earlier years from Subdiv. 4Vs ware assumed to be from another stock, possibly the same as that of the Subdiv. 4Vn fishery. The 1975 removal figures are the January-June 1975 Canadian allocation which was completely taken in January.

Year-class size and estimates of F. The starting F's used in cohort analysis (Table 12) were the same as those derived for the asaessment of the Div. $4 \times W$ (b) stock (see below). The catch in numbers at age used In the analysis are the combined Div. $4 W(a)$ and $4 X W(b)$ removals. The starting for the 1970 year-class, however, was adjusted from 0.39 to 0.24 to get a year-class size at age 1 of 2.0×1966 year-class. It was assumed that $M=0.2$. The calculated fishing mortalities and year-class sizes at age from cohort analysis are given in Tables 13 and 14.

Catch predictions for 1975 and 1976. The two fisheries occur at different times of the year. Thus, it would not be appropriate to use the same mean weights in the predictions for the two fisheries. The mean weights (kg) used for both portions of the fishery are given below;

Age	2	3	4	5	6	7	8	9	10
Div. 4W(a)	.036	.087	.141	.178	.234	.270	.292	.325	.336
Div. 4XW(b)	.031	.114	.179	.230	.286	.299	.334	.360	.386

Catch predictions are given in Table 15. Since the Div. $4 W$ (a) fishery occurs in the early part of the year and the Div. 4 XW (b) fishery in the sumer and autum, the projection was rum for essentially 6 -month intervals. The natural mortality was divided equally between the two 6 -month periods (0.1 for each). The 1974 catch in numbers at age in the Div. $4 \mathrm{~W}(a)$ fishery were then run against the derived combined population size for 1974 to determine the fishing mortality exerted on the combined stock in the first part of the year. The 1974 catch in numbers at age in Div. $4 \mathrm{XW}(\mathrm{b})$ were then run againat the population size remaining after the 1974 Div. $4 W(a)$ fishery to determine the fishing mortalities for the rest of 1974 on this combined stock. This procedure was repeated for the first part of 1975 since the Canadian quota allocation for January-June 1975 in Div. 4W(a) was taken in January and catch in numbers at age was available. However, this was not possible for Div. 4 XW (b) for 1975 since the 1975 fishery in that area had not yet begun. Thus, for the 1975 Div. $4 \mathrm{XW}(\mathrm{b})$ portion of the combined fishery, the values of F predicted in the 1975 assessment of Div. 4XW(b) (see below) were initially used. These values, however, resulted in a catch higher than the TAC set for that area in 1975, and all these F values had to be reduced by 15\% to keep the catch within the TAC for 1975 (90,000 tons, plus an estimated 15,000 tons by inshore fixed gear not under quota regulation).

For the 1976 prediction for the Div. $4 W(a)$ fishery, the 1975 F values for ages $2-5$ were used and those on the older age-groups set at 0.10 . The F values for the Div. $4 \times W(b)$ portion were get at the levels used in the 1974 assessment of Div. 4XW(b) fishery (maximum yield per recruit values: Redbook 1974, p. 109).

The sizes of the 1973 and 1974 year-classes were set at 750×10^{6}. In 1974 conventional year-class sizes were agreed upon for new year-classes for which no data were available which was based on the size of the moderate and poor year-classes. This resulted in a conventional aize for Div. 4 XW (b) of about $400 \mathrm{x} 10^{6}$. Combining Div. $4 \mathrm{XW}(\mathrm{b})$ and Div. 4 W (a) resulted in an average increase of 88% in the size of year-classes 1965, 1967, 1968, and 1969 and approximately that increase was applied to the 400×10^{6} to obtain 750×10^{6}.

Accepting the assumptions as to the size of year-classes, the prediction indicates a reduction in the catches from 1975 to 1976 of about 4,000 tons in Div. $4 \mathrm{~W}(\mathrm{a})$ and 16,000 tons in Div. $4 \times W(b)$ and a reduction in biomass of 47% between 1974 and 1976. This total reduction in catch in the combined areas is very similar to the prediction resulting from the assessment of Div. 4 XW (b) alone (see below).

At the Annual Meeting in 1974, the 1975 TAC for Div. $4 \mathrm{VW}(a)$ was partitioned to allow regulation to be based on a fishing season cormencing 1 July 1975. As a consequence, a January-June 1975 TAC was placed on Div. 4 VW (a) of 30,000 tons. The 1975 TAC for Div. $4 \mathrm{XW}(\mathrm{b})$ was aet at 90,000 tons. Thus, the TAC for the combined Div. 4XW(b) and $4 \mathrm{~W}(\mathrm{a})$ area in 1975 will allow a catch of 120,000 tons (plus an estimated inshore catch of 15,000 tons in Div. $4 \mathrm{XW}(\mathrm{b})$, for a total catch of 135,000 tons). The analysia indicates that a total catch for 1976 from the combined areas of 115,000 tons can be taken, a reduction of 20,000 tons from that of
1975. Removing the estimated inshore catch for 1976 (11,000 tons) results in a 1976 TAC of 104,000 tons.

(c) Div. 4XW(b) assessment (Southwest Nova Scotia)

Catch statistics and catch composition. The total catch of herring in Div. 4XW(b) by Canada, Federal Republic of Germany, Japan, Poland, and USSR was 142,000 tons, about 6% more than taken in 1973. The catch by country is given in Table 16; the Canadian catches are partitioned by gear, and the catches made in New Brunswick (Div. 4X(b) are excluded from the assessment due to unresolved stock inter-relationships between Div. $4 \mathrm{X}(\mathrm{b})$ and $4 \mathrm{X}(\mathrm{a})$.

The 1974 catch composition is given in Table 17. The 1970 year-class again supported the Div. 4XW(b) adult fishery. Although large numbers of the 1972 year-class were taken, this was mainly by the New Brunswick juvenile fisheries.

Year-class size and estimates of F. The calculated estimates of F and resultant stock sizes at age from cohort analysis are given in Tables 18 and 19. It was assumed that $M=0.2$. The derivation of starting F 's for 1974 are given below.

The main F at age 2 for $1964-71$ of 0.20 was used as the F for the 1972 year-class at age 2 ; as a reault, the size of the 1972 year-class is estimated to have been 1.2×10^{9} at age 1 about 0.5×1966 year-class. This estimated size is justified on the basis that the 1972 year-class has contributed substantially more to the catches in the various D1V. 4XW(b) fisheries than did the acknowledged weak year-classes of 1971, 1969, or 1968 (Table 20). Catches of the 1972 year-class in the New Brunswick and Nova Scotia weir and purse seine fisheries at age 2 were aubstantially greater than catchea of the 1968, 1969, or 1971 year-classes (Table 20). The 1972 year-class also appeared to be relatively atrong in the 1975 Div . 4W(a) fishery (26% of catch).

The 1974 commercial catch data continue to indicate that the 1971 year-class is a poor one. Consequently, it was again assumed to be 5.0×10^{8} individuals at age 1 , the estimated strength of the 1969 year-class, and the 1974 F set at 0.10 to conform with this estimate in the cohort analysis.

The 1970 year-class contributed the major portion of the 1974 catch. Log records indicated a relatively high CPUE, comparable to that of the 1973 fishery. The 1973 assumption that the 1970 year-class was 2.0 x 1966 year-class at age 1 , that is, 4.8×10^{9} individuals, was again assumed, resulting in an F for 1974 of 0.39 .

The size of the 1969 year-class was assumed to be 5.0×10^{8}, one of the poorest on record, and resulted in an F of 0.40 for 1974.

Catch curves were calculated for the 1966, 1967, and 1968 year-classes and catches for 1975 and 1976 were extrapolated from the curves for each year-class. These extrapolated catches were then used in cohort analysis with an F of 1.0 to estimate the F for 1974. The resultant F 's in 1974 for the 1966, 1967, and 1968 year-classes were $0.97,1.18$, and 0.38 , respectively.

The 1974 F values for the 1964 and 1965 year-classes were arbitrarily set at 1.0 . This estimate appeared to be a reasonable value of F for older age-groups.

Catch predictions for 1975 and 1976. Catch predictions are given in Table 21.
The conventional size of year-classes entering the Div. $4 \times W$ (b) fishery at age 3 was discussed at the 1974 Annual Meeting (Redbook 1974, p. 109) and agreed to be set at 300×10^{6}, the level of the poorer yearclasses. From the cohort analysis (Table 21), the sizes of these year-classes (1968, 1969, 1972) were about 400×10^{6} at age 2. Thus, for both 1975 and 1976 recruitment at age 2 was assumed to be 400×10^{6}. The F values for 1975 were set in the same proportions as in 1974, but had to be increased slightly to arrive at the 1975 Div. $4 \mathrm{XW}(\mathrm{b})$ TAC of 90,000 tons (plus estimated inshore gear catches of 16,000 tons). Since the 1970 year-class has been supporting this fishery, the F on this yesr-class was increased the most, from 0.39 in 1974 to 0.55 in 1975.

The values for F in 1976 were set as 0.50 for age 5 and older, 0.25 at age $4,0.13$ at age 3 , and 0.03 at age 2 , as used in the 1974 assessment. These values are the same as those used in 1974 and are based on maximum yleld per recruit (Redbook 1974, p. 107).

The mean weights used in previous predictions appeared inappropriate for 1975 and 1976 , since recent data indicate an increase in weight at age. Therefore, a regression of weight at age was calculated for the 1970 year-class for ages $1-4$. The mean weight at age for ages 4,5 , and 6 were then calculated from the regression and used in the prediction analysis. Mean weights for ages 2,3 , and $7-10$ were not changed from those used in 1974. Mean weights used are as follows:

Age	2	3	4	5	6	7	8	9	10
Weight (kg)	.031	.114	.179	.230	.286	.299	.334	.360	.386

The prediction indicates a decline in stock size of 25% from the beginning of 1975 to 1977, and a reduction in the catches in 1976 of about 25,000 tons, from 106,000 to 81,000 tons.

Since the inshore catches (eatimated for 1975 at 15,000 tons and not under quota regulations) were included in the assessment, these atimated catches have to be removed from the predicted catch before the TAC is set. With the reduction in stock size predicted, the inshore catches should also decrease (probably to 11,000 tons in 1976); siace the total predicted catch in 1976 is 81,000 tons, removing the estimated 11,000 tons for inshora catches results in a TAC for 1976 of 70,000 tons, a 20,000-ton reduction from 1975.

Only by raising the fishing mortalities on all age-groups substantially above optimum levels in 1976 could the TAC remain at 90,000 tons. It must be stressed, however, that if the 1972 year-class is not as strong as assumed, the stock alze could be severely reduced even with the recommended reduction in the is 1976 TAC.

If neither the 1973 or 1974 year-class is stronger than assumed (400×10^{6}), and optimum F levels are maintained on all age-groups, an even greater reduction in catch will be required for 1977.

(d) Div. SY assessment

Catch statistics. The catch of the adult herring fishery in Div. $5 Y$ (Jeffreys Ledge area) increased in 1974 to 18,000 tons from 16,859 tons in 1973 (Table 22). Catches deciined for the German Democratic Republic and Canada and increased for USA. The 1970 year-class provided 10,631 tons (60%) of the adult fishery catch. The catch of the Div. SY Juvenile fishery also increased silghtly, from 16,400 tons in 1973 to 19,142 tons in 1974. Age 3 and older herring made up 9,582 tons (50% of the total) from the 1974 juvenile fishery.

Estimation of recruitment and fishing mortality

Ages 7 and older. Cohort anlyses were applied to the catches with starting $\mathrm{F}^{\prime} \mathrm{s}$ in 1974 of 0.4 , 0.6 , and $\overline{0} . \overline{8}$. The resulting F^{\prime} s were averaged over ages $4-9$ for each year and plotted against years. The average F increased from 0.06 in 1967 to $0.91,0.91$, and 0.72 in 1971, 1972, and 1973, respectively. A value of 0.8 , therefore, was chosen as the most representative F in 1974 for year-classes 1962-1967.

Ages 5 and 6 (1968 and 1969 year-classes). The catch data for the 1968 and 1969 year-classes were extrapolated ahead in time by fitting a regression of the natural log of the catches on years. This procedure produced estimates of catches for the 1968 year-class in 1975 and for the 1969 year-class in years 1975-78. Cohort analyses were applied again to the data with a range of starting $\mathrm{F}^{\prime} \mathrm{s}$ of 0.6 to 1.1 which produced $F^{\prime} s$ in 1974 varying from 0.74 to 0.96 . The true F probably lies between these two values and a starting F of 0.8 was chosen in 1975 which gave an F in 1974 of 0.844 . The estimated F's in 1974 of the 1969 year-class varied from 0.364 to 0.400 for a range of starting $\mathrm{F}^{\prime} \mathrm{s}$ in 1978 of 0.6 to 1.1. Again, a starting F of 0.8 was chosen which gave an F of 0.382 in 1974 .

Age 4 (1970 year-class). The catch of this year-class increased from 2,500 tons in 1973 to 10,600 tons in 1974. Quantitative estimates of the strength of this year-class could not be resolved and it was assumed, as in prior assessments, to be twice as large as the 1966 year-class at age 3 . This procedure gave a 1970 year-class size of 533 miliion in 1973 and, with a catch of only 18.6 million fish, gave an F of 0.039 in 1973, a year-class size of 420 million and an F of 0.180 in 1974 .

Age 3 (1971 year-class). Juvenile surveys are not yet available for Div. 5 Y , except for Albatross IV bottom fish surveys. The catches of herring are amall and the stratified numbers per tow (not log transformed) are difficult to interpret (see Section 3(b)). There were no herring of the 1971 yearclass caught as age 2 herring in the Div. $5 Y$ survey, but catches at age 3 guggest that the 1971 yearclass is very poor. In spite of the decrease in abundance of year-classes 1968 and older in 1974 in the adult fishery, the catch of this 1971 year-class in 1974 in the adult fishery was only 15 million herring, a catch even less than the 1969 year-class at age 3 . In the Div. $5 Y$ juvenile fishery, the catch of the 1971 year-class was the smallest ever at age 1 and second smallest at age 2 (Table 23). The aize of the 1971 year-class recruiting in 1974 was assumed to be equal to the poorest observed in the fishery (1969 year-class at age 3 of 64 million fish). An assumed year-class size of 64 million and a catch of 15 million fish gave an F in 1974 of 0.30 for the 1971 year-class.
Recruitment in 1975 (1972 year-class) and 1976 (1973 year-class). Stratified numbers per tow of the 1972 year-class at age 2 from the Albatross IV spring survey in Div. $5 Y$ suggest that this year-class is even poorer than the 1971 year-class. The catch of the 1972 year-class at age 1 in the juvenile fishery was 10.6 million fish (Table 23) which was more than the age 1 catch from the 1967, 1968, 1969, and 1971 year-classes, but fewer than from all other year-classes aince 1946. The catch at age 2 of the 1972 year-class in 1974 was only 175 million herring in the Div. 5 y juvenile fishery, only sifghtly more than that from the 1971 yearclass (155 million). The abundance of this year-class is, therefore, assumed to be equal to the very poor 1969 year-class at age 3 of 64 milion fish.

The catch of the 1973 year-class at age 1 in the Div. 5 Y juvenile fishery was 30.5 million fish, a catch three times that of the 1972 year-class catch at age 1 . Survey data from Div. $5 Y$ are not yet available for
the 1973 year-class but 1975 Albatross IV surveys in Div. 5 z suggest that this year-class is very gasall. The abundance of this year-class is known with even less certainty than for the 1972 year-class and was incorporated into the analysis at two levels: (1) 64 wilion fish which is equal to the poor year-class of 1969, 1971, and 1972 at age 3: (2) 150 miliion fish - the conventional year-class aize assumed in the previous assessment (Redbook 1974, p. 110).

Estimate of stock size. Catches and estimates of F are given in Table 24 for 1967-74. Stock size is shown to the beginning of 1975. The stock size at the beginning of 1976 was calculated by assuming that the TAC of 15,000 tons (16,000 minus 1,000 tons that will not be taken by the Federal Republic of Germany and the German Democratic Republic) will be taken in the adult fishery in 1975. Selection coefficients applied to fishing mortalities were calculated by age from years 1972 and 1973. These were $0.171,0.475$, $0.708,0.871$ for ages $3-6$ and 1.0 for ages 7 and older. Mean weights were those used in previous assessments: $0.155,0.180,0.220,0.240,0.275,0.300$, and 0.320 kg for ages $3-9$, and 0.340 kg for fish older than age 9. This procedure gave an F at 100% in 1975 of 0.33 , a catch of 15,000 tons and a stock aize (age 4 and older) in 1976 of 63,600 tons, a decrease in stock from 76,400 tons in 1975.

Recommended TAC level for 1976. The projected stock sizes in 1977 resulting from catches in 1976 are given In Table 25 and Fig. 4. At the Jume 1974 Annual Meeting, the Comission (1974 Meeting Proceedings No. 20, Appendix II, p. 240) agreed that the Div. 5Y catch in 1976 must maintain the adult stock (age 4 and older) at a minimum of 60,000 tons. It was also agreed that this level of catch for 1976 will not be increased above that for 1975 (25,000 tons, when this constraint was agreed to in June 1974 but changed to 16,000 tons in November 1974), unless the adult stock size at the end of 1975 has reached a level (110,000 tons) which will provide the maximum sustainable yield by the end of 1976. Assessment results indicate this level will not be reached in 1975. To maintain the other constraint of a minimum stock size of 60,000 tons, a catch in 1976 of $9,000-21,000$ tons may be taken, depending on the size of the 1973 year-class (Table 25). A TAC of 21,000 tons would merely keep the size of the resulting stock at the already low level without any safeguard for over-estimating the 1973 year-class. A TAC of 9,000 tons would also keep the size of the stock on the low level of 60,000 tons if recruitment of the 1973 year-class is at the lower level, but would reduce the probability that the stock size at the end of 1976 will be further reduced by overestimating the size of the 1973 year-class. If the size of the 1973 year-class is larger than anticipated, the resulting stock size in 1977 will only increase to a level of $65,000-75,000$ tons which is still low compared to previous years.

In view of the present state of the atock, the Working Group recommends that the Commission set the TAC as close to 9,000 tons as possible. Only by accepting buch a TAC level can any increase in the stock size be anticipated in accord with the managemant objectives of the Commiasion to increase the stock size.

(e) Div, $5 Z$ and Stat. Area 6 (Georges Bank stock)

Catch statistics. The catch of 146,000 tons in 1974 for this stock was the lowest since 1966 and represents a reduction from catches of 174,000 tons and 199,000 tons in 1972 and 1973, respectively, when TACs of 150,000 tons were also in effect (Table 26). In 1974, however, the German Democratic Republic joined the Commission and since then its catches have been included in the TAC. The 1970 year-class accounted for 82% of the 1974 catch by numbers and 81.4% by weight.

Indices of abundance. The catch per unit of effort of the German Democratic Republic factory trawlers and side trawlers decreased slightly in 1974 from 1973 (German Democratic Republic Research Report, Sum. Doc. 75/29), while the catch per unit of effort of B-18 trawlers of Poland in September and October increased from 30.7 to 38.7 tons per day from 1973 to 1974 (Polish Research Report, Summ. Doc. 75/28). The US bottom trawl surveys suggest a strong decline in abundance from 1973 to 1975. The stratified numbers per tow from the US spring surveys in Southern New England were $7.24,2.09$, and 0.04 for 1973, 1974, and 1975, respectively. There seems to be no doubt that the abundance of the Georges Bank stock is declining, but the Working Group could not agree on an abundance index that would give the rate of decline which could be used for assessment purposes.

Estimation of recruitment and fishing mortality. Fishing mortality on different ages in 1974 were estimated as follows:

Age 5 and older. Fishing mortalities for the older age-groups were estimated using cohort analysis. In order to minimize the bias introduced by the starting value of F, catches from the 1967 and 1968 yearclasses were extrapolated up to age 10 by using the catch curve method. Starting the cohort analysis on these year-classes with $F=0.8$ produced an F for herring at age 6 in 1974 of 0.72 and for 7-year-old herring of 0.63 . Starting with an F of 1.2 , the corresponding values were 0.74 and 0.66 , respectively.

The year-clasges prior to 1970 contributed only 13% to the catch in 1974 and they are expected to contribute even less in 1975 and 1976. Therefore, for the catch prediction, a uniform starting F of 0.7 in 1974 was accepted for herring of age 5 and older.

Age 4 (1970 year-class). No new information on the abundance of this year-class in relation to the $1 \overline{966}$ year-class was available at this meeting, other than the catch data. The sum of the catches in

1973 and 1974, however, suggest that this year-class is at least 150% of the 1966 year-class at age 3. It was assumed that this year-class was 200% of the 1966 year-class at age 3 , as was done in previous assessments (Redbook 1974, p. 112), and, using the catch in numbers in 1973 and 1974, fishing mortality for 1974 was estimated as 0.5 (Table 27).

Age 3 (1971 year-class). The size of the 1971 year-class recruiting in 1974 at age 3 to the fishery was assumed to be equal to the poorest observed in the fishery (1969 year-class at age 3 equals $550 \times$ 10^{6} herring). This assumption was based on juvenile surveys and the catch of this year-class in juventle fisheries. Using the catch in numbers in 1974 from this year-class, fishing mortality for 3-year-old herring in 1974 was estimated as 0.084 (Table 27).

Recruitment levels of the 1972 and 1973 year-class. The juvenile herring surveys of 1973, 1974, and 1975 and the US bottom fish survey for 1972 were examined to determine the abundance of the 1972 and 1973 yearclasses. These data and their reliability are explained in Section 3(b). Table 4 indicates that the 1972 year-class is very weak relative to the 1970 year-class and that the 1973 year-class is even poorer than the 1971 year-class. The Working Group could not agree, however, that the surveys provide accurate estimates of age 2 herring abundance.

The catch of age 2 herring in 1974 from the Div. 5Z-Stat. Area 6 fishery was 2 million as compared with age 2 catches of $13,13,28$, and 10 million for year-classes 1968-1971, respectively. The abundance, therefore, of the 1972 year-class was assumed to be equal to the 1969 and 1971 year-class abundance at age 3 (550 million).

Catch information for the 1973 year-class exists only in the juvenile fisheries of Div. $4 \mathrm{X}(\mathrm{b})$ and Div. 5Y. In Div. 4X(b) 46.7 million herring were taken at age 1 (Table 17) in 1974 - the lowest catch of age 1 fish since the 1961 year-class, except for the 1971 and 1972 year-classes. Catches of this year-class in Div. 5 Y at age 1 (Table 23) were 30.5 million which was greater than all other recent year-classes, except the 1970 year-class. In summary, this year-class may be poor but considerable uncertainty remains as to its size.

The TAC level for 1976

Assumptions. The assessment of the Div. 52-Stat. Area 6 herring stock to set a TAC for 1976 was made with the following assumptions:

1) The 1975 TAC of 150,000 tons will be fully taken.
2) The size of the 1970 year-class at age 3 is equal to 200% of the 1966 year-class as estimated in the previous assessment (Redbook 1974, p. 44).
3) The sizes of the 1971 and the 1972 year-classes at age 3 are equal to the poorest year-class observed in the fishery, i.e., the 1969 year-class as estimated in the previous assessment (Redbook 1974, p. 44).
4) The size of the 1973 year-class is equal to 800 million fish at age 3 or approximately onehalf the size of the 1966 year-class and 25% below the $1964-69$ average. The size of this year-class was chosen at a conventional level, as the information on the abundance of this year-class is very limited. This level of recruitment (800 million) may be conservative over a long period, but it may be equal to or an over-estimate of present levels of recruitment. Therefore, an alternative assessment was worked out assuming recruitment of the 1973 yearclass at age 3 is equal to the size of the two preceding year-classes (i.e., 550 million fish) in order to demonstrate the consequences to the size of the stock in 1977 of over-estimating the size of the 1973 year-class.

Results. The results of the assessments are described in Fig. 5 and Table 28. The two constraints (Report of the Fourth Special Commission Meeting, Proceedings No. 7, Appendix II, P. 93) provided by the Commission specify that an adult stock of at least 225,000 tons be maintained to the beginning of 1977 and that the present TAC of 150,000 tons can only be increased if the adult stock size at the end of 1975 will reach a size that will provide the maximum sustainable yield by the end of 1976 (i.e., at least 500,000 tons). This level cannot be reached by the end of 1975 and the TAC for 1976 cannot, therefore, be advised to exceed 150,000 tons. Under the two assumptions on recruitment of the 1973 year-class, a catch in 1976 of 150,000 tons would leave an adult stock size at the beginning of 1977 ? of 176,000 tons or 137,000 tons. This resulting stock size is far below the level imposed by the Commisaion as minimum. In order to prevent a decline of the stock size below the level of 225,000 tons by the end of 1976, the TAC in 1976 should not exceed 100,000 tons. On the basis of the lower assumption as to the recruitment of the 1973 year-class in 1976, the corresponding TAC for 1976 would be 60,000 tons.

A TAC of 100,000 tons in 1976 implies a fishing mortality of 0.7 on fully recruited year-classes in that year. This level of F is equal to that of 1974 and below the level to be expected for 1975 if the TAC in 1975 is fully taken ($\mathrm{F}=0.8$).

On the lower assumption of recruitment, a TAC of 60,000 tons in 1976 would imply a fishing mortality
of 0.38 in that year which is alightly higher than the level of $\mathbf{F}_{0.1}$ frow yield per recruit consideration (Fig. 6). A TAC of 100,000 tons would marely keep the size of the resulting stock at the already low level without any safeguard for over-estimating the 1973 year-class. A TAC of 60,000 tons would also keep the size of the stock on the low level of 225,000 tons if recruitment of the 1973 year-class is at the lower level, but would reduce the probability that the stock size at the end of 1976 will be further reduced by over-estimating the size of the 1973 year-class. If the size of the 1973 year-class is larger than anticipated, the resulting stock size in 1977 will again increase to a level of 250,000300,000 tons which is still low compared to previous years.

In view of the present state of the stock, the Working Group recomends that the Commisaion set the TAC as close to 60,000 tons as possible. Only by accepting auch a TAC level can any increase in the stock size be anticipated in accord with the management objectives of the Comission to increase the stock size. If evidence appears suggesting a high abundance of the 1973 year-class, a TAC of 100,000 tons could be recomended which would maintain the stock restraint size of 225,000 tons.

7. Future Research

(a) ICNAF should continue monitoring the production and survival of herring larvae in Div. 4X and Subarea 5 to complete the tima series needed for proper evaluation and analysis. Additional larval survey coverage is also needed in March or April.
(b) ICNAF should continue the spring juvenile herring surveys in Div. $5 Z$ and expand the survey area to include the culf of Kaine with high-opening bottom trawls.
(c) In view of the successful tagging atudies conducted by Canada in 1973 and 1974, the Working Group felt that additional tagging studies should be conducted in Subareas 4 and 5.
(d) Because of recent changes in growth, sampling to provide mean weight data should be continued.

Table 1. Provisional herring catches (tons) by country and stock area, 1974.

Country	Nf1d-Gulf of St. Lawrence		BanquereauChedebucto Bay $4 \mathrm{VW}(\mathrm{a})^{1}$	Nova ScotiaBay of Fundy $4 \mathrm{XW}(\mathrm{b})^{2}$		Gulf of Maine 5Y	Georges Bank 5Z +6	$\begin{aligned} & 1974 \\ & \text { Total } \end{aligned}$	1973 Tota
	SA 3	4RST		$<23 \mathrm{~cm}$	$>23 \mathrm{~cm}$				
Bulgaria	-	-	-	-		-	1773	1773	
Canada (MQ)	-	28750	$38554{ }^{3}$	41365^{4}	79150^{4}	4045	1217	192081	170258
Canada (N)	18300	13635	1825	41365	79150	4045	217	193760	170258
France (M)	-	-	-	-	-	100	1935	2035	2794
Fed.Rep. Germany	-	-	638	-	187	2384	21933	25142	33846
German Dem.Rep.	-	-	-		-	1008	31530	32538	58612
Japan	-	-	8	-	1011	-	2433	3452	2777
Poland	-	-	-	-	98	103	39312	39513	50307
Romania USSR	-	-	-	-	-		2009	2009	297
USSR	-	-	2955	-	20102	-	41710	64767	83524
USA	-	-	-	-	-	$29376{ }^{5}$	3312	32688	26293
Total 1974	18300	42385	43980	41365	100548	37016	146164	429758	-
Total 1973	17162	68104	30592	36907	97424	32391	202335	-	484915

Div. $4 \mathrm{~W}(\mathrm{a})$ is that part of 4 W north of $42^{\circ} 52^{\prime} \mathrm{N}$.
Div. $4 \mathrm{~W}(\mathrm{~b})$ is that part of 4 W south of $42^{\circ} 52^{\prime} \mathrm{N}$.

Catches in Div. 4 V and $4 \mathrm{~W}(a)$ were 10,791 and 27,793 tons respectively.
Includes approximately 30,700 tons of fuveniles and 3,225 tons of adults taken on New Brunswick side of the Bay of Fundy.
Includes a total of 19,143 tons of herring taken in Div. 5 Y juvenile fishery.

Table 2 . Stratified numbers per tow of herring at age, and z age composition for 1972-75 spring research cruises. ${ }^{1}$

Vessel	Year	Ages										Total	
				3		4		5		$6+$			
		No/cow	I	No/tow	$\underline{2}$	No/tow	$\%$	No/tow	2	No/tow	2	No/tow	7
Div. 4x													
Albatross IV	1972	5.58	98.94	0.06	1.06	0	0	0	0	0	0	5.64	100
Walther Herwig	1973	514.45	97.00	15.27	2.90	0.29	<0.100	0.14	<0.10	0.07	<0.10	530.22	100
Albatross IV.	1973	1.34	26.22	2.09	40.90	1.19	23.29	0.44	8.61	0.05	1.00	5.11	100
Walther Hexusig	1974	11.02	3.78	147.97	50.79	131.60	45.17	0.64	0.02	0.55	0.01	291.36	100
Albatrose IV	1974	1.76	78.92	0.17	7.62	0.28	12.55	-	-	0.02	0.09	2.23	100
Walther Herwig	1975	69.38	63.29	24.32	22.19	15.91	14.92	-	-	-	-	109.61	100
Albatross IV	1975												
Div. 5 Y													
Albatross IV	1972	1.18	80.82	0	0	0.22	15.07	0.06	4.11	0	0	1.46	100
"	1973	-	-	0.34	3.72	3.08	33.70	3.86	42.23	1.86	20.35	9.14	100
"	1974	0.02	3.03	0.15	22.72	0.48	72.73	-	-	0.01	1.52	0.66	100
"	1975												
Div. 5 Z													
Albatross IV	1972	6.74	55.93	2.09	17.34	3.05	25.31	0.17	1.42	0	0	12.05	100
Walther Herwig	1973	3.23	0.10	2211.94	98.00	35.26	1.60	4.92	0.20	1.77	<0.10	2257.30	100
Albatrose IV	1973	0.35	3.02	7.44	64.25	3.19	27.55	0.25	2.16	0.35	3.02	11.58	100
Walther Hervig	1974	-	-	94.40	1.89	4845.30	97.52	23.81	0.50	4.98	0.10	4968.50	100
Albatross IV	1974	-	-	0.03	0.31	8.57	89.83	0.61	6.39	0.31	3.45	9.54	100
Khronometer	1974	-	-	48.77	3.03	1444.28	89.85	57.79	3.60	56.61	3.52	1607.45	100
Walther Herwig	1975	0.45	-	20.93	3.28	22.80	3.57	561.32	87.83	33.61	5.26	639.11	100
Albatrose IV	1975	0.01	2.63	0.01	2.63	0.13	34.21	0.23	60.53	-	-	0.38	100
Wieczno	1975	-	-	0.08	1.87	3.03	70.80	0.50	11.68	0.67	15.65	4.28	100
Ermet Haeakel	1975	0.06	0.02	1.84	0.73	151.05	60.25	50.61	20.19	47.13	18.80	250.69	100

[^0]Table 3. Stratified mean numbers/haul of $2-4$-year-old herring in 1973-75 spring surveys.

$\begin{aligned} & \text { Year- } \\ & \text { class } \end{aligned}$	Walther Herwig						Albatross IV									
	Div. 4x			Div. 52-SA 6			Div. 4X			Div. 5Z-SA 6			Yearclass	Div. 5Y		
	Age groups			Age groups			Age groups			Age groups				Age groups		
	2	3	4	2	-3	-4	2	-3	4	2	-	4				
1969	-	-	0.3	-	-	35	-	0.06	1.19		2.09					
1970	-	15	132.0	-	2212	4845	5.58	2.09	1.19 0.28	6.74	2.09	3.19 8.57	1969	1.18	0	3.08
1971	514	148	16.0	3.0	94	23	1.34	0.17	0.28	6.74 0.35	7.44 0.03	8.57 0.131	1970	1.18	0.34	0.48
1972	11	24	-		21		1.76	0.17		0.35	$0.01{ }^{1}$	0.13	1971	0 0.02	0.15	-
1973	69	-	-	0.4	21	-	2.76	-	-	$0.01{ }^{1}$	${ }_{0.01}$	-	1972	0.02	-	-

Table 4 . Ratios of abundance indices of year-classes to the 1970 or 1971 year-class, in terms of catch per haul at ages 2-4, for surveys by W. Herwig and AZbatross in year-ciass, in terms of catch per

$\begin{aligned} & \text { Year- } \\ & \text { class } \end{aligned}$	Albatrobs IV			Wather Herwig			Albatross IV					
	Div. 4X			DIv. $52+$ SA 6			Div. $52+$ SA 6			Div. 5 Y		
	Age groups			Age groups			Age groups			Age groups		
	2	3	4	2	3	4						
1969	-	0.029	4.250	-	-	0.007	-	0.281	0.372	-	-	
1970	1.000	1.000	1.000	-	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
1971	0.240	0.081	-	1.000	0.042	0.005	0.052	0.004	0.015	${ }^{1.00}$	0.441	1.0
1972	0.315	-	-	-	0.010	-	O.	0.001	0.015	0.017	0.441	
1973	-	-	-	0.133	-	-	0.001	-	-	-	-	-

Table 5. Total herring catch from Div. $4 \mathrm{X}(\mathrm{b}), 5 \mathrm{X}, 5 \mathrm{Z}$ and SA 6 (millions of fish).

Year-class											
Year	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963
1956	286.5	1813.5	757.2								
1957		276.7	2931.8	421.8							
1958		1.1	416.4	2034.4	423.5						
1959				420.0	1575.1	466.3					
1960					200.4	3436.9	161.0				
1961	7.0	13.8	64.1	171.8	47.8	125.6	756.9	310.2			
1962	9.7	18.3	140.4	299.1	99.5	74.4	100.6	2617.8	74.3		
1963			5.9	14.7	67.6	145.6	66.1	825.1	1804.4	309.3	
1964					34.9	97.5	129.4	253.2	421.4	1152.0	461.7
1965						12.8	25.8	113.9	89.9	137.6	2533.4
1966					2.0	13.8	65.5	283.1	228.5	97.4	787.9
1967				0.2	10.5	11.4	50.1	388.5	271.7	145.2	230.3
1968					2.0	9.0	25.0	355.7	463.9	266.6	411.7
1969						1.7	26.2	121.2	213.7	221.6	310.1
1970							2.7	31.5	58.1	77.3	123.8
1971								3.2	29.1	25.5	67.9
1972									0.8	22.3	30.7
1973										0.2	5.4
	303.2	2122.9	4315.8	3362.0	2463.3	4395.0	1409.3	6303.4	3655.8	2455.0	4962.9

Year-class										
Year	1964	1965	1966	1967	1968	1969	1970	1971	1972	Total
1956										2856.7
1957										3630.3
1958										2875.4
1959										2461.4
1960										3798.3
1961										1497.2
1962										4434.1
1963										3238.7
1964										2550.1
1965	287.1									3200.5
1966	1200.7	168.4								2847.3
1967	260.0	919.9	805.3							3093.1
1968	135.6	403.5	3182.7	164.2						5419.9
1969	298.6	244.1	613.1	817.8	166.5					3034.6
1970	156.1	302.9	506.8	207.1	1022.2	639.6				3128.1
1971	133.7	216.4	331.1	327.1	417.6	479.3	271.4			2302.3
1972	55.4	129.4	203.7	259.0	160.9	65.2	1016.7	9.1		1953.2
1973	5.3	19.6	37.1	47.2	76.2	293.9	1333.5	460.0	37.6	2316.0
	2532.5	2404.2	5679.8	1822.4	1843.4	1478.0	2621.6	469.1	37.6	54637.2

Table 6．Estimates of fishing mortality rates for herring from combined areas of Div． $4 \mathrm{X}(\mathrm{b}), 5 \mathrm{Y}, 5 \mathrm{~S}$ and SA 6.

year	1955	1956	1957	1958	1959	1960	1961	${ }_{19}^{\text {Yearce }}$	${ }_{198}^{1989}$	1964	1965	1966	1967	196	196	1970	Hean F^{1}
1956	． 163																
$\begin{aligned} & 19559 \\ & 1959 \\ & 1959 \end{aligned}$	（1．660	${ }_{1.421}^{\text {1．203 }}$	1．075														
	． 300																
$\begin{gathered} 1966 \\ 196296 \\ 1962 \end{gathered}$	2．619		．136	． 18	． 118												
			：871	． 51.70	． 306	．207	${ }_{\text {a }}^{\text {．132 }}$										退
		$\stackrel{.002}{.003}$	． 1100	． 208	$\begin{gathered} .092 \\ \substack{355 \\ \hline 105} \end{gathered}$		${ }^{.039}$	075	${ }_{\text {S }}^{\text {S26 }}$								边
196				1．356	．513	1．014	． 770	：43，	$\begin{aligned} & .4168 \\ & .428 \\ & \hline 62 \end{aligned}$	：130	．238						1914
$\begin{aligned} & 1969 \\ & 19907 \\ & 190 \end{aligned}$						${ }_{1.843}^{1.301}$	${ }_{\text {1．95s }}$	：8929	${ }_{\text {．}}^{625}$	． 4.45	． 469	． 4898	：206				（1969
1991							${ }_{\text {coser }}^{\text {3．100 }}$	． 673	1．869	1．994	${ }_{1}{ }^{1734}$	${ }_{1} .683$	232	．722	43	200	（72
1993								1．100	${ }_{1.100}^{1.409}$	1．1204	${ }_{1.100}^{1.522}$	${ }_{1.100}^{1.383}$	${ }_{1.1202}^{1.322}$		． 820	206	

1 Weighted average over all age groups．

扂	
$\stackrel{\circ}{\square}$	
¢	
$\stackrel{8}{2}$	
¢	
$\stackrel{\square}{\square}$	\％\％\％ijuaz
号	
号	
๕	
喜	\％\％\％iniziziziño
$\stackrel{8}{2}$	
\％	
咢	
¢	
$\stackrel{\square}{\square}$	
管	

Table 8．Catch of herring by age from Div． $4 X(b), 5 Y, 5 Z$ and SA 6 combined．

		Period 1956－1973						Period 1961－1973					
		Total catch		Average catch		Mean F	Faveragedoveryear－classes	Total catch		Average catch		Mean\mathbf{F}	F averaged over year classes
Age	Weight （kg）	$\begin{aligned} & \text { Millions } \\ & \text { of fish } \end{aligned}$	(1000 tons）	$\begin{aligned} & \text { (M11lions } \\ & \text { of } \mathrm{fish} \text {) } \end{aligned}$	$\begin{gathered} (1000 \\ \text { tons }) \end{gathered}$			$\begin{aligned} & \text { (Millions } \\ & \text { of fish) } \end{aligned}$	$\begin{gathered} (1000 \\ \text { tons }) \end{gathered}$	$\begin{aligned} & \text { (Millions } \\ & \text { of fish) } \end{aligned}$	$\begin{gathered} (1000 \\ \tan \mathrm{e}) \end{gathered}$		
1	． 012	5934.42	71.2	329.69	4.0	． 091	55－70	3704.62	44.5	284.97	3.4	． 085	61－70
2	． 031	30754.98	953.4	1708．61	53.0	． 72	55－70	18963.78	587.9	1458.75	45.2	． 47	61－70
3	． 118	7298.28	861.2	405.46	47.8	． 41	55－70	5698.28	672.4	438.33	51.7	． 28	61－70
4	． 180	2528.64	455.2	158.04	28.4	． 27	56－69	2527.54	455.0	194.43	35.0	． 36	61－69
5	． 220	2713.35	596.9	180.89	39.8	． 48	56－68	2713.35	596.9	180.89	39.8	． 57	61－68
6	． 240	2309.02	554.2	164.93	39.6	． 57	57－66	2309.02	554.2	164.93	39.6	． 66	61－66
7	． 275	1780.09	489.5	136.93	37.7	． 74	57－65	1780.09	489.5	136.93	37.7	． 95	61－65
8	． 300	884.65	265.4	68.05	20.4	． 77	57－64	884.65	265.4	68.05	20.4	1.08	61－64
9	． 340	288.96	98.3	24.08	8.2	.79	57－63	288.96	98.2	24.08	8.2	1.01	61－63
10	． 340	133.98	45.6	19.14	6.5			133.98	45.6	19.14	6.5		
11	． 340	10.80	3.7	1.54	． 5			10.80	3.7	1.54	． 5		

TABLE 9．Stock size and catches for herring from Div． $4 \mathrm{X}(\mathrm{b}), 5 \mathrm{Y}, 5 \mathrm{Z}$ and SA 6 for 3 sets of mortalitiles．

$\begin{aligned} & \mathrm{N} \\ & \text { 暍 } \end{aligned}$			స్సN か
$\begin{aligned} & \vec{\theta} \\ & \text { 安 } \end{aligned}$			
			 걷운 $\because .$.

TABLE 10. Numbers of herring at age ($\mathrm{x} 10^{-6}$) taken in the Canadian 1974-75 Div. 4V*(a) fiahery.

		1	2	3	4	5	Age-group		8	9	104	Total	
		6					7						
1974	4 Vn		0.1	4.2	3.7	29.4	5.9	2.4	2.0	1.8	2.1	4.6	56.2
	4W(a)	-	0.1	1.3	11.8	1.1	0.4	0.3	0.4	0.4	0.6	16.4	
1975	4 Va	-	-	1.8	1.1	8.6	1.4	0.3	0.6	0.9	3.1	17.8	
	4W(a)	-	1.9	39.8	15.4	74.0	7.4	2.2	1.5	2.0	5.3	149.5	

Table 11. Removale ($x 10^{-6}$) in the Div. $4 W(a)$ herring fishery, 1969-75.

Age-group										
1969		4.0	49.0	70.3	35.5	31.9	7.1	1.9	0.7	0.0
1970		47.8	145.4	273.4	75.3	87.5	36.6	20.8	9.7	0.4
1971	1.3	149.3	150.3	68.3	51.1	36.8	44.8	25.9	9.7	5.0
1972	2.6	0.5	20.2	35.0	70.2	13.3	8.3	10.7	4.2	4.7
1973		14.9	39.9	23.8	7.2	3.6	1.4	0.9	8.4	0.2
Can.		2.6	9.7	118.2	15.5	3.4	2.3	1.8	1.6	1.4
1974 USSR			0.3	8.9	4.1	0.9	0.5	0.3	0.4	0.4
Total		2.6	10.0	$\underline{127.1}$	19.6	4.3	2.8	2.1	2.0	1.7
1975		1.9	39.8	15.4	74.0	7.4	2.2	1.5	2.0	1.9

Table 12. Removals at age and starting eatiastes of F for the combined Div. $4 \times W(b)$ and 4W(a) fishery.

Age	1.963	1964	1965	$\begin{aligned} & \text { Removals } \\ & 1966 \end{aligned}$	$\begin{aligned} & \text { (x } 10 \\ & 1967 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { by } y \\ & 1968 \end{aligned}$	1969	1970	1971	1972
1	-	-	1	4	14	-	-	6	10	-
2	211	46	43	746	70	132	160	649	35	170
3	270	69	79	374	160	213	56	650	37	-
4	238	64	122	462	114	120	106	599	-	-
5	268	151	238	131	127	29	55	-	-	-
6	103	177	79	71	22	13	-	-	-	-
7	130	98	51	74	6	-	-	-		
8	470	51	14	34	-	-	-	-		-
9	273	12	5	-	-	-	-	-		
10	6	3	-	-	-	-	-	-	-	-
$\begin{aligned} & \text { F's to } 1.00 \\ & \text { start } \end{aligned}$		1.00	1.00	0.38	1.18	0.97	0.40	0.24	0.102	0.20

Table 13. Estimates of fishing mortality for the combined Div. $4 \mathrm{XW}(\mathrm{b})-4 \mathrm{~W}$ (a) fishery at age from cohort analysia, apauming $M=0.2$.

Year-class											
1	. 00	. 00	. 00	. 00	. 02	. 00	. 00	. 00	. 02	. 00	
2	. 05	. 03	. 04	. 30	. 10	. 22	. 26	. 12	. 07	. 20	
3	. 08	. 06	. 09	.25	. 35	. 66	. 14	. 17	. 10	-	
4	. 09	. 08	. 20	. 54	. 44	1.03	. 42	. 24	-	-	
5	. 14	. 27	. 74	. 29	1.44	. 77	. 40	.	-	-	
6	. 07	. 58	. 59	. 25	1.14	. 97	-	-	-	-	
7	. 12	. 76	1.02	. 45	1.18	-	-	-	-	-	
8	. 86	1.28	. 91	. 38	-	-	-	-	-	-	
9	3.56	1.39	1.00	-	-	-	-	-	-	-	
10	1.00	1.00	-	-	-	-	-	-	-	-	

Table 14. Calculated atock size $\left(x^{10^{-6}}\right.$) for the combined Div. $4 \mathrm{XW}(\mathrm{b})-4 \mathrm{~W}(\mathrm{a})$ fishery at

Age	1963	1964	1965	1966	1967	Year-class	1968	1969	1970	1971
1	6300	1885	1550	3844	1013	905	930	7576	685	1261
2	5157	1542	1268	3143	817	740	760	6197	552	1031
3	4031	1221	999	1898	605	487	478	4486	420	
4	3056	937	747	1216	351	206	340	3085		
5	2287	709	501	577	184	60	183			
6	1630	444	195	354	36	23				
7	1241	203	88	226	9					
8	899	78	26	118						
9	311	18	9							
10	7	4								

Table 15. Catch predictions for 1975 and 1976 for the Div, 4XW(b)-4W(a) fishery with
associated population numbers and estimates of associated population numbers and estimates of F.

$\begin{aligned} & 1974 \\ & \text { Age } \end{aligned}$	Population$\left(\times 10^{-8}\right)$	P		Catch				Residual population		$\frac{\text { Catch }}{(000 t)}$
						We(${ }^{\text {con mt }}$				
		4Wa	$4 \times \mathrm{x}$			4 Wa	4xwb	4Wa ($\times 10^{-6}$)	4×106	
2	1031	. 01	. 22	2.6	167.5	0.4	5.4	923.6	670.7	20.8
3	420	. 03	. 09	10.0	27.4	1.0	3.5	368.8	305.0	34.8
4	3085	. 05	. 21	127.1	472.2	20.2	85.8	2655.3	1947.5	348.6
5	183	. 12	. 29	19.6	35.0	3.5	8.1	146.9	99.4	22.9
6	23	. 22	. 79	4.3	8.7	1.0	2.5	16.7	6.9	2.0
7	9	. 42	. 88	2.9	3.0	0.8	0.9	5.4	2.0	0.6
8	118	. 02	. 02	2.1	1.3	0.7	0.7	104.7	92.8	31.0
9	9	. 27	. 58	2.0	2.6	0.7	0.9	6.2	3.2	1.2
10	4	. 61	1.44	1.8	1.4	0.6	0.5	1.9	0.4	1.2 0.2
Totals	4882			172.3	719.2	28.9	108.3	4229.5	3127.9	462.1
1975										
2	750.0	. 02	. 18	8.3	103.2	0.5	3.2	665.2	502.7	
3	670.7	. 08	. 18	43.7	87.7	4.3	10.0	560.2	423.4	48.3
4	305.0	. 07	. 09	17.0	21.2	2.8	3.8	257.3	212.8	38.1
5	1947.5	. 09	. 47	80.3	323.9	16.0	74.5	904.4	511.4	117.6
6	99.4	. 09	. 36	8.1	23.8	1.9	6.8	82.2	51.9	14.8
7	6.9	. 43	. 94	2.2	2.3	0.6	0.7	3.9	1.4	0.4
8	2.0	2.11	1.05	1.7	0.3	0.5	0.1	0.2	0.1	0.0
${ }^{9}$	92.8	. 04	. 34	2.8	22.2	1.1	8.0	80.7	52.0	18.7
10	3.2	. 94	. 89	1.8	0.5	0.6	0.2	1.1	0.4	0.2
Totals	3877.5			165.9	585.1	28.4	107.3	2555.2	1756.1	253.7
1976										
2	750.0	. 02	. 03	13.9	19.4	0.5	0.6			
3	502.7	. 08	. 13	36.8	49.1	3.2	5.6	419.9	333.6	478
4	423.4	. 07	. 25	27.0	75.4	3.8	13.5	357.2	251.7	44.0
5	212.8	. 09	. 50	17.4	66.1	3.1	15.2	176.0	96.6	24.6
6	511.4	. 10	. 50	46.8	157.3	10.9	45.0	418.7	229.8	62.0
7	51.9	. 10	. 50	4.8	16.1	1.3	4.8	42.5	23.3	62.8 6.8
8	1.4	. 10	. 50	0.1	0.4	0.0	0.1	1.1	0.6	6.8 0.2
${ }^{9}$	0.1	. 10	. 50	0.0	0.0	0.0	0.0	0.6	0.3	0.1
10	52.0	. 10	. 50	4.8	16.1	1.6	6.2	42.5	23.4	7.9
Totals	2505.7			151.4	399.9	24.4	91.0	2123.7	1543.4	242.2

Table 16. Preliminary monthly catches (m.t.) in the 1974 Div. 4 XW (b) herring fishery.

| | Jan | Feb | Mar | April | May | June | July | Aug | Sep | Oct | Nov | Dec | Total |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| NS Purse Seine | - | - | - | - | 770 | 15313 | 35766 | 23950 | 2201 | - | - | - | 78000 |
| NS Weirs | - | - | - | - | 917 | 602 | 451 | 424 | 161 | 5 | - | - | 2560 |
| NS Gill Nets | - | - | - | 16 | 68 | 1060 | 680 | 985 | 838 | 13 | 1 | - | 3661 |
| NS Miscellaneous | - | - | - | - | - | - | - | - | - | - | - | - | 3119 |
| NS Totals | - | - | - | 16 | 1755 | 16975 | 36897 | 25359 | 3200 | 18 | 1 | - | 87340 |
| NB Purse Seine | 2355 | 794 | 267 | 868 | - | - | 165 | - | 295 | 1718 | 1825 | 1287 | 9574 |
| NB Weirs | 31 | - | - | 37 | 1257 | 1875 | 6101 | 7621 | 4668 | 2299 | 470 | 41 | 24400 |
| NB Totals | 2386 | 794 | 267 | 905 | 1257 | 1875 | 6266 | 7621 | 4963 | 4017 | 2295 | 1328 | 35529 |
| CANADA Total | 2386 | 794 | 267 | 921 | 3012 | 18850 | 43163 | 32980 | 8163 | 4035 | 2296 | 1328 | 121314 |
| USSR Total | - | - | 163 | 550 | 3156 | 15143 | 1090 | - | - | - | - | - | 20102 |

1 Excludes 1, 296 tons for Poland, FRG and Japan.

Table 17. Removals (thousands) of herring at age by the 1974 Div. 4XW(b) Canadian Bay of Pundy fishery. The totals may differ sightly from the table values due to rounding off to thousands.

	Age-group											
	1	2	3	4	5		7	8	9	10	11	Total
NB Weirs	38080	627393	49788	18495	598	119	10	13	56	8	12	734572
NB Purse Seine	8637	512977	23581	903	107	-	-	-	-	-	-	546205
NB Totals	46717	1140370	73369	19398	705	119	10	13	56	8	12	1280777
NS Weirs	4	31518	1661	8351	485	85	21	25	35	15		42199
NS Gill Nets	-	-	93	37153	4331	1170	690	284	375	64	502	44663
NS Purse Seine	-	131003	25168	339065	20086	4917	1815	490	1136	363	563	615000
NS Miscéllaneous	-	961	169	2221	128	32	12	3	7	2	3	3538
NS Totals	4	1303852	100460	386790	25030	6204	2538	802	1553	444	1068	615006
CANADA Total	46721	1303852	100460	406188	25735	6323	2548	815	1609	452	1080	1895783
USSR Total	-	-	279	85419	10006	2461	478	492	1027	902	1771	102835
TOTAL 4XW(b) Catch ${ }^{1}$	46721	1303852	100739	491607	35741	8784	3026	1307	2636	1354	2851	1998618

1 Excluding 1,296 tons for Poland, FRG and Japan.

Table 18. Eatimates of fishing mortality of Div. $4 X(a)-4 W(b)$ herring fishery at age from cohort analysis, assuming $M=0.2$.

Age	1964	1965	1966	1967	1.968	1969	1970	1971	1972	
1	.00	.00	.00	.04	.00	.00	.00	.02		
2	.05	.06	.55	.24	.27	.03	.20	.06		
3	.10	.14	.50	.08	.33	.13	.30	.102		
4	.12	.13	.61	.37	1.03	.49	.39			
5	.47	.75	.58	1.10	.82	.40				
6	.57	1.43	1.17	1.48	.97					
7	1.24	1.29	1.44	1.18						
8	2.00	1.00	.38							
9	1.00									
10										

Table 19. Calculated stock size $\left(\mathrm{X}_{10} 0^{-6}\right)$ at age for Div. $4 \mathrm{X}(\mathrm{a})-4 \mathrm{~W}$ (b) herring fishery.

Age	1964	1965	1966	1967	1968	1969	1970	1971	1972
1	1303	1056	2375	432	482	499	4806	500	1241
2	1066	864	1940	341	395	408	3931	402	1016
3	832	668	914	220	248	324	2612	311	
4	619	476	454	167	146	233	1603		
5	449	342	201	95	45	116			
6	263	133	92	26	15				
7	134	71	23	5					
8	62	20	5						
9	15	4							
10	2								

Table 20. Numbers ($\times 10^{-6}$) of 2 year old herring taken by the various Canadian fisheries in Div. 4XW(b).

	1966	1967	1968	YEAR CLASS						1969	1970	1971	1972
NB Purse seine	1578.0	236.9	491.1	227.0	$-*$	85.1	513.0						
NB Weirs	694.5	350.7	321.9	165.0	615.0	197.7	627.4						
NS Purse seine	678.6	26.1	41.5	4.6	232.3	2.1	131.0						
NS Weirs	117.6	39.4	41.8	6.5	107.2	18.4	31.5						
TOTALS	3018.7	653.1	887.3	403.1	954.7	303.3	1302.9						

* Canadian domestic minimum size regulation eliminated the NB purse seine fishery in 1970, but was not effective since then.

Table 21. Catch Predictions for 1975 and 1976 for $4 \mathrm{Xa}-4 \mathrm{~Wb}$ stock with associated population numbers (X 10^{-6}), weights (' 000 mt), and estimates of F.

Age		Populat $\left(10^{-6}\right)$	F	Catch $\left(10^{-6}\right)$	$\begin{gathered} \text { Catch } \\ (000 \text { tons) } \end{gathered}$	Residual Population $\left(10^{-6}\right)$	Population $\left(10^{-6}\right)$
1974	2	1,016	0.20	167.7	5.2	681.0	21.1
	3	311	0.10	27.2	3.1	229.9	26.2
	4	1,603	0.39	472.1	84.5	888.6	159.1
	5	116	0.40	34.8	8.0	63.7	14.7
	6	15	0.97	8.7	2.5	4.7	1.3
	7	5	1.18	3.3	1.0	1.3	0.4
	8	5	0.38	1.5	0.5	2.8	0.9
	9	4	1.00	2.2	0.8	1.2	0.4
	10	2	1.00	1.0	0.4	0.6	0.2
		3,077		718.5	$\underline{106.0}$	1,873.8	$\underline{0.24}$
1975	2	400.0	0.21		2.1		8.2
	3	681.0	0.21	117.5	13.4	452.0	51.5
	4	229.9	0.11	21.9	3.9	168.6	30.2
	5	888.6	0.55	343.9	79.1	419.7	96.5
	6	63.7	0.42	19.9	5.7	34.2	9.8
	7	4.7	1.11	3.0	0.9	1.3	0.4
	8	1.3	1.24	0.9	0.3	0.3	0.1
	9	2.8	0.40	0.8	0.3	1.5	0.5
	10	$\begin{array}{r} 1.2 \\ \hline \end{array}$	1.05	0.8	0.3	0.3	0.1
		2,273.2		567.4	105.9	1,343.4	$\frac{0.1}{197.3}$
1976	2	400.0		9.7	0.3		
	3	265.5	0.13	29.8	3.4	190.8	21.8
	4	452.0	0.25	91.1	16.3	288.2	51.6
	5	168.6	0.50	60.4	13.9	83.7	19.3
	6	419.7	0.50	151.0	43.2	208.4	59.6
	7	34.2	0.50	12.4	3.7	17.0	5.1
	8	1.3	0.50	0.6	0.2	0.6	0.2
	${ }^{9}$	0.3	0.50	0.0	0.0	0.1	0.0
	10	$\frac{1.5}{1.743 .1}$	0.50	0.5	0.2	0.8	0.3
		1,743.1		355.5	81.2	1,107.4	$\underline{167.8}$

Table 22. Catch of herring in ICNAF Division 5Y (national allocation in brackets).

Table 23(a). Maine herring catch (nillions of fieh)

Year	1	2	3	4	$\begin{gathered} \text { RGE } \\ 5 \\ \hline \end{gathered}$	6	7	8	$8+$	Total
1960	85.77	1,446.91	200.37							1.733 .05
1961	229.20	386.97	39.51							655.68
1962	51.94	2,238.35	37.51							2,327.80
1963	73.68	771.76	497.91							1,343,35
1964	97.93	474.88	32.30	22.70	0.98					628.79
1965	40.93	932.85	57.81	2.41	4.19					1,038.19
1966	20.99	291.65	208.52	2.23	10.06	1.25	0.36	0.18		535.24
1967	21.47	268.07	122.08	33.74	17.73	3.48			1.81	468.38
1968	7.76	877.34	151.58	5.58	2.03		0.13			1,044.41
1969	5.65	216.58	249.01	11.45	0.64	0.48	0.32	0.16	0.16	484.45
1970	1.94	183.09	45.24	17.16	8.42	3.44	1.65	1.57	0.47	262.95
1971	108.98	61.89	17.69	20.98	7.75	1.61	0.48	0.44	0.26	220.06
1972	0.18	338.87	7.05	3.08	1.22	1.36	0.88			352.64
1973	10.59	154.91	72.42	1.12	. 77	. 38	. 49	. 17	. 19	241.46
1974	30.45	174.91	52.59	20.84	1.16	0.31	. 04			280.30

Table 23(b). Maine herring catch (metric tons)

Year	1	2	3	4	$\begin{gathered} \text { RGE } \\ 5 \\ \hline \end{gathered}$	6	7	8	$8+$	Total
1960	950	37,864	20,534							59,348
1961	2,703	14,575	6,853							24,131
1962	624	64,520	4,232							69,376
1963	736	17.928	48,232							66,895
1964	1,210	16,645	4,023	4,155	263					26,295
1965	449	24,676	5,872	353	738					32,088
1966	174	6,330	18,452	275	648	199	75	25		26,178
1967	225	6,635	14.575	5.819	113	698	-	---	424	28.490
1968	80	21,037	7.932	744	376	---	36	-	-	30,205
1969	72	6,702	15,909	883	72	95	72	24	24	23,852
1970	294	6,258	4,422	2,672	531	726	294	265	118	15,581
1971	1.909	2,838	1,731	3,388	1,793	409	127	126	86	12,407
1972	${ }^{3}$	17,360	833	492	242	318	264			19,513
1973	164	8,100	7,456	193	164	80	121	55	65	16,400
1974	486	9.074	5,489	3,779	230	75	9			19,143

Table 24. Herring catches from Div. 5 Y adult fishery by age group, 1967-74.

[^1]Table 25. Resultant stock sizes (age 4 and older) in 1977 as a function of catches (age 3 and older) for the
Div. $5 Y$ adult herring fishery assuming that the 1970 year-class at age 3 is 200\% of the 1966 yearclass at age, the 1972 year-class equals the 1971 and 1969 year-classes at age 3 (63.5 millions)

Stock size at start of 1975 (age 4 and older)	$\begin{aligned} & \text { Total catch } \\ & \text { in } 1975 \\ & \hline \end{aligned}$	```Stock size}\begin{array}{c}{\mathrm{ at start }}\\{\mathrm{ of 1975}}\\{\mathrm{ (age 4 and older) }}```	$F_{100 \%}$ in 1976	$\begin{gathered} \text { Catch in } \\ 1976 \\ \hline \end{gathered}$	$\begin{gathered} \text { Stock } 81 \text { ize } \\ \text { in } 1977 \\ \text { (age } 4 \text { and older) } \end{gathered}$
million 000 tons	(000 tons)	million 000 tons	100\% 1976	(000 tone)	(000 tons)

350	76	15	276.3	63.6	1973 year-class $=63.5$ million		
					. 2	8.9	59.8
					. 4	16.5	52.0
					. 6	23.1	45.3
					. 8	28.7	39.7
					1973 year	50 mi1	
					. 2	9.3	72.1
					. 4	17.4	63.9
					. 5	21.0	60.0
					. 6	24.3	56.8
					. 8	30.3	50.8

Table 26. Catch of herring (tons) in Div. $5 Z$ and SA 6, with national allocations in parentheses.

Year	USA	Canada	Sermany FP	fierman DR	USSR	Poland	Japan	Bulnaria	France	Iceland	Norvay	Pomania	Others	Total
1960														
1961	105				67.550									67,655
1962	101				151,864	277								152.242
1963	322				97,646									97,968
1964	489				130,914	35								131,438
1965	1,191				38,262	1,447						1,982		42,882
1966	4,308			1,133	120,113	14.473						2,677		142,704
1967	1,211	1,306	28,171	22,159	126,759	37,677	40					1,420		218,743
1968	758	13,674	71,086	67,719	143,097	75,080	171			292		1,656	65	373,598
1969	3,678	945	61,990	44,624	138,673	45,021	583	812		12,786	1,224	337	85	310,758
1970	2,011	7	82,498	28,063	61,579	70,691	1,412	348				685		247,294
1971	3,822	12,863	54,744	18,447	81,258	88,325	2,466	4,551				898		267,374
1972	$\begin{gathered} 2,782 \\ (4,000) \end{gathered}$	$\begin{gathered} 53 \\ (5,800) \end{gathered}$	$\begin{gathered} 27,703 \\ (31,600) \end{gathered}$	40,016	$\begin{gathered} 48,072 \\ (48,200) \end{gathered}$	$\begin{gathered} 49,392 \\ (49,400) \end{gathered}$	$\begin{aligned} & 1,161 \\ & (1,200) \end{aligned}$	2,355	500			${ }^{2,156}(600)$	$(8,200)$	$\begin{gathered} 174,190 \\ (150,000) \end{gathered}$
1973	$\begin{gathered} 4,627 \\ (5,250) \end{gathered}$	$\begin{gathered} 5,082 \\ (5,050) \end{gathered}$	$\begin{gathered} 31,502 \\ (31,600) \end{gathered}$	53,326	$\begin{gathered} 52,340 \\ (48,200) \end{gathered}$	$\begin{gathered} 49,275 \\ (49,400) \end{gathered}$	$\begin{aligned} & 1,249 \\ & (1,200) \end{aligned}$	1,380	1.180			$\begin{aligned} & 297 \\ & (1,300) \end{aligned}$	$(8,000)$	$\begin{gathered} 200,258 \\ (150,000) \end{gathered}$
1974	$\begin{gathered} 3,312 \\ (6,955) \end{gathered}$	$\begin{gathered} 217 \\ (2,980) \end{gathered}$	$\begin{gathered} 21,933 \\ (23,900) \end{gathered}$	$\begin{gathered} 31,530 \\ (31,440) \end{gathered}$	$\begin{aligned} & 41,710 \\ & (41,725) \end{aligned}$	$\begin{gathered} 39,312 \\ (39,000) \end{gathered}$	2,433	1.773	1,935			2,009	$(4,000)$	$\begin{aligned} & 146,164 \\ & (150,000) \end{aligned}$
1975	$(8,400)$	$(3,000)$	$(23,750)$	$(31,150)$	$(41,400)$	$(38,400)$							$(4,200)$	

Table 27. Stock size and catch (miliions) and fishing mortality for Georges Bank herring stock (D1v. 5Z+SA 6), 1965-1974.

Year Stock	Numbers (millions) by age group								Age 3 and older		Age 4 and older	
	2	3	4	5	6	7	8	>8	Number	Weight	Number	Weight
1965	2241	1576	2335	2409	355	77	46		6798	1352	5222	1101
1966	1490	1834	1281	1880	1879	268	51	51	7244	1468	5410	1187
1967	1758	1220	1490	1017	1378	1285	160	44	6594	1603	5374	1391
1968	1863	1438	993	1165	735	902	709	138	6080	1514	4642	1263
1969	1172	1523	1130	748	650	391	347	276	5065	1171	3542	912
1970	835	959	1206	735	361	281	149	111	3802	801	2843	647
1971	771	672	672	580	357	185	146	76	2688	555	2016	452
1972	3942	619	250	301	217	133	58	73	1651	403	1032	289
1973	682	3202	476	105	53	35	18	6	3895	541	693	118
1974	682	$550{ }^{1}$	1693	149	28	13	8	4	2445	480	1895	386
$1975{ }^{2}$		$550{ }^{1}$	414	841	60	11	5	5	1886	389	1336	298
									Total			
Catch									Number	Weight		
1964	16.5	150.8	230.5	128.4	97.5	34.9			658.6	131.0		
1965	0.4	10.3	34.9	103.0	25.5	12.7	9.3		200.3	40.6		
1966	0.3	12.8	34.6	178.0	280.1	65.1	13.6	2.0	587.1	142.7		
1967	1.8	6.9	60.6	108.0	250.7	379.2	49.4	21.3	877.9	218.6		
1968	2.5	52.1	72.0	336.0	233.4	432.9	336.6	28.4	1493.9	373.4		
1969		45.5	210.8	277.1	278.1	188.5	190.5	133.3	1323.8	306.0		
1970	12.6	125.4	450.5	270.3	122.3	92.9	51.6	47.3	1172.9	247.0		
1971	12.9	332.5	275.5	284.6	175.8	103.9	50.4	35.7	1271.3	262.5		
1972	28.0	35.0	110.0	214.0	158.0	100.0	45.0	50.0	712.0	174.0		
1973	10.0	1026.0	266.0	64.0	33.0	23.0	12.0	8.0	1432.0	199.0		
1974	1.9	39.9	608.9	68.6	12.9	6.1	3.5	2.1	743.9	146.2		
			Fishing mortality				$\begin{array}{r} \text { Mean } F^{3} \\ (\text { Age } 3+) \\ \hline \end{array}$					
1964	0.009	0.057	0.08	0.28	0.77	0.52			0.19			
1965	<0.001	0.007	0.02	0.05	0.08	0.20	0.25		0.05			
1966	<0.001	0.008	0.03	0.11	0.18	0.31	0.35	(0.7)	0.10			
1967	0.001	0.006	0.05	0.12	0.22	0.39	0.42	(0.7)	0.16			
1968	0.002	0.041	0.08	0.38	0.43	0.76	0.74	(0.7)	0.36			
1969	0.000	0.034	0.23	0.53	0.64	0.76	0.94	(0.7)	0.37			
1970	0.017	0.156	0.53	0.52	0.47	0.46	0.48	(0.7)	0.42			
1971	0.019	0.791	0.60	0.78	0.79	0.97	0.48	(0.7)	0.78			
1972	0.008	0.065	0.67	1.54	1.63	1.78	1.98	(0.7)	0.87			
1973	0.016	0.437	0.96	1.12	1.18	1.32	1.27	(0.7)	0.54			
1974		0.083	0.50	0.70	0.70	0.70	0.70	(0.7)	0.42			

1 Recrutiment at age 3 assumed as in the previous assessment (Redbook 1974, p. 112).
Stock size calculated from $N_{i+1}=N_{i e^{-2 i}}$
3 Average $\mathrm{F}^{\prime} \mathrm{s}$ weighted over year-classes by stock size in number.
Table 28. Georges Bank herring stock (Div. $5 Z$ and Statistical Area 6) 1977 stock size as a function of 1976

Fig. 1. Catch and stock size for herring in Div. $4 X(b)$, Subarea 5 and Stat. Area 6 combined with and without a juvenile fiahery.

Fig. 2. Catches of herring from juvenile fisheries in Div. 4X(b) and 5Y.

Fig. 3. Mean yearly Canadian catch per unit effort values for Subdiv. 4 Va and Div. $4 \mathrm{~W}(\mathrm{a})$ fisherfes for the seasons 1971-72 to 1974-75.

Fig. 4. Predicted Herring catches in 1976 and resulting stock size in 1977 for the Div. 5Y adult fishery for two levels of recruitnent.

Fig. 5. Predicted herring catches in 1976 and resulting stock sizes in 1977 for the Div. $52+$ Stat. Area 6 fishery for two levels of recruitment.

Fig. 6. Herring in Div. 52 and Stat. Area 6: yield per recruit curve based on parameters used in the assessment.

[^0]: 1 The Albatroas IV catch par haul indices for herring in 1972 were increased by a factor of 2.75 to account for the estimated fishing power differential for this speciea between the 36 trawl (uged in 1972) and the 41 trawl (used in 1973 and subsequent apring surveys). This factor is based on unpublished uS data on trawl comparison experiments.

[^1]: Recruitment assumed equal to 1969 year-class at age 3 .
 Stock size calculated from $N_{1+1}=N_{1 e}-7$.
 3 Average F^{\prime} s weighted over year-class by stock size in number.

