the Northwest Atlantic Fisheries

ANNUAL MEETTNG - JUNE 1975
USSR Research Report, 1974
by
K. G. Konstantinov

PINRO, Murmansk, USSR
and
A.S. Nobkov

AtlantNIRO, Kaliningrad, USSR

The total Soviet catch of Eish in the ICNAF Convention Area in I974 was II95899 tons (Table I), which is by 97866 tons less than in 1973. The overall catch by the USSR in the NorthWest Atlantic Ocean in 1974 ran into 1274716 tons, which is by 82.640 tons less than in I973.

SUBAREA 0
A. Status of fisheries

In I974, the Soviet catch of fish was 3526 tons. in this Subarea (Table I). As usual, the fishery was conducted in the second half of the year, mainly in the southern part of that Subarea at depths from 600 m up to 800 m . The bulk of catcheramade up of Greenland halibut and grenadier Macrurus rupestris with a little amixture of redfish.
Saile I.
Species composition of catches by the USSR (in tons)

B. Special scientific investigations

I. Biological investigations

Grenadier Macrurus rupestris. Throughout the period from $3 I$ July up to 2 August I974, a scouting BMRI accomplished a seriek n trawlings in the area $62^{\circ} 50, N, \cdot 6 I^{\circ} 00$, W. The catches fluctuated from $\geqslant \mathrm{ur}$ to - tons and the grenadier from 57 cm up to 68 cm in lensth prevailed in the catches (Table 2). As usually, the males . .ere much more representative than female for this fish species. All the individuals caught were immature, their stomachs content consisted of bathypelagic Crustacea.

SUBAREA I

A. Status of Fisheries

I: the second half of I974, the Soviet fishery fleet worked . Airly in tne central part of the Suborea. Favourable meteorologicei ani ice conditions allowed to conauct the fishery throughout all that period incluaing December. The catches consisted of the ireenlanc balibut and the grenadier Macrurus rupestris, the total Lumuer of fish taken was I8247 tons (Table I).

B. Special scientific investigations

I. Environment

Observations for water temperature were accomplished at stancard hydrological sections by some expeditional vessels. Data relatnge to the end of 1974 are of a special interest as they allow to

A 4

Table 2. Size composition (\%0) of the roundnose grenadter near the Baffin Land in June - July, I974.

Length (cm)	$\begin{aligned} & I \\ & I \\ & I \\ & I \\ & \hline \end{aligned}$	$\begin{aligned} & I \\ & I \\ & I \\ & I \\ & I \end{aligned}$	$\begin{aligned} & \text { I Total for males } \\ & \text { I \& females } \\ & I \end{aligned}$
39-4I	II	3	14
42-44	II	9	20
45-47	25	8	33
48-50	50	I4	64
5I-53	48	18	66
54. - 56	56	I7	73
57-59	II8	45	163
60-62	102	24	126
63-65	IOI	32	I33
66-68	91	32	123
69-7I	52	22	74
72-74	35	18	53
75-77	23	12	35
78-80	II	10	2 I
8I-83	I	I	2
Relative number (\%0)	735	265	IOOO
Mean length (cm)	60.59	6 I .74	60.89
Number of specimens mes.sured	II24	404	I528

judge at some extent on the temperature conditions ; in the next calendar year owing to the inertia of some hydrological processes.

In October 1974, water temperature was about the long - time average in the layer from 200 m up to the surface in the area of the section 8 - A crossing the Atlantic (Irminger) component of the West - Greenland Current between $58^{\circ} 40$, N, $46^{\circ} 12^{\circ} \mathrm{W}$ and $59^{\circ} 25^{\prime} \mathrm{N}, 44^{\circ} 30^{\prime} \mathrm{W}$, but, the temperature was much lower then that rate in the layer from 500 m up to 200 m to the surface (Table 3). In November I974, the temperature anomal namely water was also observed in the layer $500-700 \mathrm{~m}$ in the northern part of the Subarea at the hydrological section II - A, between $63^{\circ} 44^{\prime} \mathrm{N}, 54^{\circ} 27^{\prime} \mathrm{W}$ and $64^{\circ} \mathrm{OI}$, $\mathrm{N}, 52^{\circ} 20^{\prime}$. W. One can suppose that early in 1975 temperatur $\frac{\text { in }}{\text { deep water layers remains lower than the }}$ lons - term average everywhere in Subarea I.

> Table 3. Water temperature $\left({ }^{\circ} \mathrm{C}\right)$ in the Atlantic component of the West-Greenland Current in I962I974, section $8-\mathbb{A}$.

2. Biological investigations

Grenacier. In July I974, the scouting BMRT accomplished a series of trawlings in the central part of the Subarea. The bottom trawl was usually towed at depths 650-800 m. The size composition of the Grenadier is given in Table 4.

Table 4. Size compisition (\%) of the grenadier in the area 64° $65^{\circ} \mathrm{N}, 57^{\circ}-59^{\circ} \mathrm{M}$, June I974.

Length (cm)	Males	I Females	$\begin{aligned} & \text { I Total for males } \\ & I_{\text {To females }} \\ & \hline \end{aligned}$
30-32	-	I	I
33-35	2	I	3
36-38	7	3	10
39-4I	18	IO	28
42-44	4 I	18	59
45-47	53	31	84
48-50	61	30	91
5I-53	63	30	93
54-56	67	26	93
57-59	75	29	104
60-62	35	35	I20
63-65	76	33	109
66-68	51	24	75
7I-69	33	21	54
72-74	23	I3	36
75-77	II	7	18
78-80	7	5	12
8I-83	3	3	6
84-86	I	2	3
87-89	-	I	I
Relative number (\%0)	677	323	1000
Mean length (cm)	57,23	57,69	57,38
Number of specimens measured	384 I	1828	5669

American plaice. In January - April I974, as well as in the same months of the previous year, concentrations of the American plaice at the pre - spawning and spawning stage were keeping in the Div. I C. On those concentrations the scouting BIRT completed more than one hundred trawlings with the further measurement of fish caught (Table 5).
$\begin{aligned} & \text { Table 5. Size composition (\%) of the } \\ & \text { American plaice in Div. I } C \\ & \text { in January - March I974. }\end{aligned}$

Length (cm)	I January		February			March			
	I Ma- I Fe-		TMalesI Ma-I Fe-			IMa-	I Ma- I Fe-TMales		
	I les	I ma-	I\& $\mathrm{fe}-$	I lesI	ma-	Iles	I les	I ma-	I\&c fe-
	I	I les	Imales		les	If fe-	I	I les	Imales
	1	I	I	I I		Imales		I	I
I6-I7	-	-	-	3	-	3	6	-	6
I8 - I9	5	-	5	24	-	24	35	I	36
20-2I	19	-	I9	38	-	38	55	I	56
22-23	35	-	35	56	-	56	60	2	62
24-25	52	-	52	56	-	56	58	4	62
26-27	57	I	58	68	2	70	64	7	71
28-29	66	4	70	49	5	54	30	I3	43
30-3I	34	15	49	23	I9	42	I5	33	48
32-33	19	52	71	IO	62	72	9	85	94
34-35	5	II3	II8	2	108	IIO	3	IOI	IO4
36-37	-	I45	145	I	180	I8I	I	I72	173
38-39	-	182	182	-	I4I	I4I	-	120	I20
40-4I	-	97	97	-	94	94	-	73	73
42-43	-	6 I	61	-	42	42	-	34	34
44-45	-	30	30	-	I3	I3	-	13	I3
46-47	-	6	6	-	3	3	-	5	5
48-49	-	2	2	-	I	I	-	-	-
Relative number									
Mean length (cm)	26,58	37,74	34,48	24,96	37, II	33,10	24,03	36,28	32,17
Number of measured. specimens	I497	3627	5 I 24	4808	9749	I4557	2092	4139	62ßI

During the whole three months the pre - spawning and spawning American plaice were keeping in the same area without performing migrations at great distances. The largest catches were taken by the bottom trawl from the depth of 140 - I 80 m . Almost all the individuals investigated had empty stomachs; sometimes, scarce benthos volume was found in their stomachs.

In April, the spawning of the American plaice was over and their concentrations were scattered.

It should be noted here that the concentiotions of the American plaice (a cold-water fish) became much more dense than previously in Subarea I. At the same time, the Arctic - boreal fish, namely, cod decreased considerably in their number. Apparently, now is gradually developfing the process reversed to that one observed 50 jears ago, when the warming of water masses began off the West Greenland.

Tagging of commercial fish species.
In 1974, there were tagged 795 specimens of the American plaic and IOO ones of the Greenland halibut.

SUBARMA 2

A. Status of Fisheries

In I974, the Soviet catch of fish in Subarea 2 was I30.629 tons (Table I), including 8280I tons of capelin, 24241 tons of cod, 6963 tons of Greenland halibut, 8340 tons of grenadier and I290 tons of redfish. In January - February 1974, the cod fighery conducted near Labrador gave no rich catches, that was partially caused by the decrease in number of cod and the shortening of their biomass, besides that - by bad hydrological conditions, that did not favour the formation of dense and stable concentrations in the near - bottom layer. Ice conditions were very hard that forced the fishery fleet to leave the Labrador area in February.

In 1976, the commercial stock will be recruited by a very poor year \rightarrow class, as all the recruitments $\underset{\text { entered the }}{\substack{\text { atock }}}$ after I963 are small in abundance (see below Table IO). The commercial stock will be mainly formed of I966, I967 and I968 year - classes of fish at the age of IO, 9 and 8 year. old. The abundance of cod of these year-classes continues to decrease due to the natural and commercial mortality. Therefore, in 1976 the efficiency of the cod trawl fishery will be low in Subarea 2.

B. Special scientific investigations

I. Environmental studies

Water temperature determined on I November at the standard hyōrological section $8-4$, between $53^{\circ} 40^{\prime} \mathrm{N}, 55^{\circ} 44^{\prime}$ W and $54^{\circ} 50^{\prime} \mathrm{N}, 53^{\circ} 32$, W (part $A B$) was lower than the average one for the long - term period and lower than the temperature of the last year in every water layer. At the B part of the same section, between $54^{\circ} 26^{\prime} \mathrm{N}, 54^{\circ} \mathrm{I} 9^{\prime} \mathrm{T}$ and $54^{\circ} 50^{\prime} \mathrm{N}$ and $53^{\circ} 32^{\prime} \mathrm{W}$, water temperature in the layer $200-500 \mathrm{~m}$ was lower than that one for the long - term period as well, but somewhat higher than in the last year (Table 6).

Table 6. Water temperature (${ }^{\circ} \mathrm{C}$) at the 8 - 1 . hydrographic section through Hamilton - Bank (as per November I) in 1964-I974.

Part of the hydrographic section	I I I (m) I	$\begin{aligned} & \text { II } \\ & \text { I } I 964 \\ & \text { I } \\ & \text { I } \\ & I \end{aligned}$	$\begin{array}{ll} I & I \\ I \end{array}$	$1966 \frac{\mathrm{I}}{\text { I }}$	I967		1969	$\begin{array}{lr}\text { I } & \\ \text { I } \\ \text { I } \\ \text { I } \\ \text { I }\end{array}$	I97I $\begin{array}{r}\text { I } \\ \text { I } \\ \text { I } \\ \text { I }\end{array}$		I97	1974	$\begin{aligned} & \text { IRate for } \\ & \text { I I964-I974 } \\ & \text { I } \\ & \text { I } \\ & \hline \end{aligned}$
A B	0-50	0,98	I. 30	2.41	2,00	2.29	0.82	I. 29	0.88	0.35	I. 00	0.93	I. 29
A B	50-200	-0.18	I. 06	I. 44	0.89	0.18	0.36	0.32	0.43	-0.39	0.59	0.07	0.40
A B	$0-200$	0.17	I.I3	I. 72	I.I9	0.50	0.50	0.60	0.57	-0.17	0.72	0.31	0.66
B	200-500	I. 99	2.59	3.97	I. 54	1.42	I. 51	2.32	I. 44	I. 26	I.4I	I. 84	I. 94

II.

Negative anomalies of water temperature in Subarea 2 (as well as in Suparea I, see above) allow to assume that the 1975 year will be cold. The decrease in temperature will continue apparently even in 1976, the periodicity in the temperature fluctuations observed every four years at the section 8 - A testifies on this fact (Table 6).

Thus, for example, in the layer $50-200 \mathrm{~m}$ at the part $A B$ the negative water temperature is observed once four years, namely, in I964, I968 and 1972. Apparently the 1976 year will be the next one when the negative temperature is expected.

2. Biological investigations

Cod.
As it was already mentioned, the young yearclasses of the Labra-dor cod stock, i.e. those of I969, I97I and I972 were represented by a relatively small number of specimens. Cod of I965, I966, I967 and I968 year - classes prevailed in their number. That fact may be confirmed by the age samples taken off the South Labrador in May I974 (Table 7). It should be noted here that the nean length was considerable enough in the age samples, nore precisely - 55 cm . Just the same mean length was observed at nass measurements of cod when more than 4 thousand specinens were measured near the South Labrador in May I974.

Table 3 shows that the mean age and the mean weight of 'the Labrador cod are gradually increasing and, simultcneously, this fish species are decreased in their number during the last four years. All these changes may be caused by the same reason, namely, by the fact that the comercial stuck is very slowly recruited by the cod of the young year - classes, therefore, it is gradually "growing old".

Redfish Sebastes mentella. Investigations conducted in the Labrador area (as well as in other northern areas) confirmed that the fish species inhabiting these areas is characterized by large sizes, very slow growth rate and a long life duration. Thus,
in February I974, about 2 thousand specimens of Sebastes mentella taken by the bottom trawl at the depths of $300-570$ m were ineasured near the South Labrador. The mean length of males appeared to be equal to 34.98 cm , that one for females -38.01 cm . Fish at the age of 8 - I2 years prevailed in their number in the age samples, their length ranged from 27 cm up to 34 cm .

The second peak of the variation range was represented by the individuals at the age of I5 - I8 years, their length varied from 37 up to 45 cm , those fish prevailed by their weight in commercial catches. The maximum age for males was 20 years, for females 25 years.

Tagging of commercial fish species. In I974, 3507 cod individuals and 625 Greenland halibut ones were tagged in the Labrador Subarea.

Table 7. Age composition (\%) and mean length of cod near the South Labrador in May I974 (599 specimens).

Mable 8. Mean age, mean weight and the average cod number in the catch per one hour trawling off the South Labrador in the first half of I97I, I972, I973 and I974 years.

Year	$\begin{aligned} & \text { I } \\ & \text { I } \\ & \text { Iage } \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Mean } \\ & \text { (years) } \end{aligned}$	I I I	Mean weight(g	IAverage number of specimens in the catch I per BMRT hour hauling
I97I		6.6		I086	2136
I972		7.3		I295	2IIS
I973		7.4		1203	2012
IS.74		7.7		1435	I700

SUBAREA 3

A. Status of Fisheries

In I974, total Soviet catch taken by commercial fleet in Subarea 3 amounted to 4 I892I tons, including I28842 tons of capelin, 92179 ons of redtish, II43I9 tons of coa, 22633 tons of grenaciier, 34039 tons of flounder (Table I). The mean catch per one hour haul throughout the year in Subarea 3 taken by Murmansk cormercial BMRT was 2.0 , that was hiefher then that one in I968, I969, I970 and I97I, but lower than in 1966, 1967, I972 and I973.

B. Special Scientific Investigations

I. Environment

In May 1974, water temperature of the north-eastern slope of the Grand Newfoundland Bank was lower than in the same period of the previous year, but, it appeared to be almost the same as in the anomally cold I972 (Table 9). The lowest temperatures throughout the period of the last three years were registered in I973 for the waters of the south-eastern slope of the Grand Bank.

Table 9. Anomalies of water temperature (${ }^{\circ} \mathrm{C}$) in the layer 0 - 200 m at the hydrological sections 7-A, 6 - A, $4-A$ and $3-A$ (as per I5 May, I972 - I974).

2. Biological investigations

Counting of the juvenile cod and haddock.
As in the previous years, the counting of the young cod and haddock was completed in 1974 from board the research vessel "Persey II" in all the subdivisions of Subarea 3. Bottom traml vith the capron net inserted into the cod - end was used as the fish - counting gear, its mesh size was equal to 8 ma (i,e. the distance between two next lying knots). She duration of each traviling was equal to an hour, the areas of trawling were strictly ; kept in time of the fish counting trips from year to Jear.

The average catch of the young cod at the age of three full years taken in waters of the North Newfoundand Bank (Division 3 K) allows to assess the strength of year-classes of the Labrador cod stock (Table IO). It is clearly observed that the I966, I967 and I968 year-classes were succeeded by the poor ones. As it was said above, the abundance of the Labrador cod stock will be gradually decreasing in the nearest future, while the average weight of one
specimen will be increasing.
In I970, I97I and I972, there were formed : cod year - classes possessing the mean strength or that one slightly less then the mean strength in the southern part of Subarea 3 (Divisions $3 \mathrm{~N}, 30$ and 3 P). Thus, the abundance and the biomass of southerm populationsfod will be apparently kept at the same level.

In I968, a very strong year-class of cod was observed in waters of Flemish Cap Bank. In I972, cod of this stock reached commercial sizes and ϵ nsured an extremely high volume of catch. In I972, cod of Flemish Cap Bank was taken successfully by the fleet of Portugal. The strength of I97I year-class was registerea as a very high one as well, and the counting data of fish aeci $I+$ show that a very strong year-class appeared in I973. riherefore, cod stocks may considerably increase on Flemish Cap Bank in the earest future. This stock is completely isolated from the neighbouring ones, and the growing cod will not leave the waters of Flemish Cap Bank.

The abundance of haddock is always very low in the southern part of Subarea 3 and no tendency is observed to the restoration of this species stock there. the last $I 973$ year-class registered at the \because ge $I+$ should be considered as a poor one (Table II).
rotal trawl survey. Simultaneously with counting of young cod and haddock, the total trawl survey was cor..pleted at the same areas, all this allowed to assess the abundance snu the biomass of all bottom fish species includins non-comnercial ones. The survey of such a kind was conducted in summer period For the fourth time in succession. The comparison of the results obtained revealed some tendencies in the fluctuation of the abundance of some commercial fish species (Minle I2). Thus, the Laorador cod decreases in abundance according to catches of this fish apecies teken in Divisions \bar{K} and 3 L. Vice versa, cod anć redfish

Sebastes mentella increased considerably in number in waters of Flemish Cap. The abundance of the American plaice is

- 15 -
fluctuated now and there is no quite clearly expressed tendency to the falling or the decreasing of this species. As to the yellowtail flounder, it decreases in number. At last, white hake was lowering in number throughout the period from I97I up to I973, but, there appeared some signs in I974 testifying on the rebuilding of the population.

Redfish (Sebastes mentella). In I963, I964 and I965, strong year - classes of redfish were recistereu in the waters of Flemish Cap Brak. ihe theory "the sutoreculation of sjecies" being admitted, one can say that the arpearance of strong jearm classes may be considered as the effect of an intense fishery, when the fish stock is thinnedf Presently, three string yearclasses mentioned above recruited the commercial stock of redfish on Flemish Cap Bonk. Mean age and mean length oi redfish became somewhat less as the juvenile fish recruited the stock, the peak size for this fish species ranged from 27 cm up to 30 um (Table I3), the data may be compared to those ones civen in the "USSR Research Report, I966".

Sebastes mentella inhabiting the southern Subdivisions
$3 \mathrm{~N}, 30$ and 3 P possess the quality of the very rapid rebuildine
Mean catch (number of fish) of young cor (age I -

$\underset{\text { Class }}{\text { Year }}$	C I year						2 years				$1{ }^{1}$		3 years					
1958													$2 I$	2 I		¢	I	4
1959								2		3	0	3	II	c		I	2	5
1960					I	6	5	4		4	3	6	20	28	6	5	I	6
I96I	I	I		I	1	6	3	5		8	2	7	I5	40	26	I8	2	I2
I962	I	I		I	7	42	2	5	8	8	2		15	I	IO		I	I7
I963	I	2	0	I	I	3	I	8	5	5	I	13	36	31	10	73	42	58
I964	I	I	0	4 I	24	31	3	I5	I	137	13	2	\%	46				5
1965	I	I	2	I	I	5	I	I		14	I2	2 I	I5	12	6	23	20	25
1966	0	0		2	15	7	3	8	0	27	17	32	27	43	10	37	34	20
1967	0	I		0	2	0	3	II	5	3	4	20	34	26	I4	32	14	64
I956	I	I	II	6	IE	40	7	48	76	109	28	66	34	84	4		2	5
I969	I	3	0	2	4	I5	2	22	I	II	6	50	13	43		26	12	25
I970	0	I	0	6	I	6	I	5	0	24	3	9	6	6	I	$2 I$	10	3
I97I	0	0	I6	4	2	5	0	I	62	36	I5	6	2	8	2	5	ε	7
1972	0	0	2	5	2	4	0	2	I8	9	-	47						
1973	0	0	219	0	2	II												

I8.

Table II. Mean catch (number of fish) of young haddock (ageI - 3 full years) per one hour haul by control trawl the southern part of the Newfound land Subarea.

Year class	I year		2 years		3 years	
	3 NO	3 P		3	N	3 P
I963					2	17
I964			4	55	6	I53
I965	I	13	I	4 I	I	4
I966	3	IIO	δ	I9I	$\underline{1}$	20
1967	I	183	I	I6	I	2
1960	4	25	8	IO	I	4
1969	4	35	4	36	I	5
1970	I	32	I	8	I	I
I97I	9	2	3	I	I	I
1972	3	125	I	4		
1973	2	7				

Table I2. Mean catch (number of fish) of some commercial fish species per one hour haul taken in the
Newfoundland Subarea according to data of the total trawl survey, I97I - I974.

Fish species	```Year of survey```	3 K	3 L	3 M		30	$3 \mathrm{P}$
Cod	I97I	249	$4 I I$	77	226	44	I86
	I972	I58	205	66	I39	56	I45
	I973	41	29	108	I34	53	34
	I974	32	40	346	I85	30	93
Sebastes mentella	I971	292	32	66	I298	214	1459
	I972	6 I 2	37	449	366	498	654
	I973	475	II3	434	645	884	884
	I974	796	314	314	733	560	2223
American plaice	I971	94	778	64	333	360	334
	1972	74	$5 \mathrm{I6}$	4 I	387	I67	213
	I973	I42	569	55	277	278	316
	I974	I77	671	83	357	I58	284
Yellowtail flounder	1971	-	$2 I I$	-	550	547	218
	I972	-	I26	-	326	123	44
	I973	-	31	-	206	I22	52
	I974	-	84	-	395	98	93
White halke	I97I	-	-	-	-	I30	6 I
	I972	-	-	-	I	20	6
	I973	-	-	-	-	5	4
	I974	-	-	-	-	7	I6

their stock damaged by the fishery that may tre explained by its relatively short life - cycle. The \mathbf{a} andance of these populations of redfish is fluctuated and reveals no tendency to the decrease, that all ensures a constant high efficiency of the trwwl fishery.

Ichthyoplankton studies. The catch of pelagic eges and larvae of commercial fish species was completed in May - June five years running. The catch is conducted every year simultaneously with the hydrological observations at eight standard sections between 44° and $52^{\circ} \mathrm{N}$. The cod eggs extruded in the Labrador area can be observed throughout all the area.

Whe results of treatment of all the samples collected showed that the average number of cod eggs per one vertical haul is fluctuated in different years from 2.9 up to I6.0 (Table I4). Let us suppose thet the direct relationship may exist between the number of eggs developping and the strength of the Labrador cod year - class. In this case, in I974 the years - class strong enough may be formed in this area.

Capelin. To the end of May I974, the concentretions of the migrating adult capelin appeared in the area of their spawning, i. e. in the shallows of the south - eastern slope of the Grand Bank. The spawning bwgan on Ic - 20 June, its peak was observed on 25-27 June. The age composition of capelin for that period is shown in Teble I5.

The spawning being over, capelin migrated to the areas of feeding lying to the north. Throughout the period from August to October, capelin was intensively feeding on pelagic

Table I3. Size composition (\% α of
redfish Sebastes mentella.
on Flemish Cap Bank, March, February
and April I974.

Length (cm)	February		I	March			April		
	$\begin{aligned} & \frac{1}{I} \text { Ma- } \\ & \frac{\mathrm{M}}{\mathrm{I}} \mathrm{les} \\ & \frac{1}{I} \\ & \frac{I}{I} \end{aligned}$	$\begin{aligned} & I_{\text {Pema- }} \\ & I_{\text {les }} \\ & \frac{1}{I} \\ & I \\ & I \\ & \hline \end{aligned}$		$\begin{array}{r}\text { Ma- } \\ \text { Les } \\ \text { I } \\ \text { I } \\ \\ I \\ I \\ I \\ \hline\end{array}$	Fema les	flotail Ifor I ImalesI Iand I Ifema-I Iles I			rotal ifor ma. Iles Iand feImales
22	I		I						
23	5	2	7	2	I	3	I	I	2
24	14	8	22	13	7	20	4	2	6
25	34	21	55	31	15	46	I6	9	25
26	54	30	84	48	27	75	25	2 I	46
27	81	40	I2I	92	46	138	59	40	99
28	59	46	105	99	69	168	64	51	II5
29	37	30	67	61	47	I08	44	53	97
30	32	20	52	35	31	66	36	47	83
31	$2 I$	12	33	$2 I$	16	37	26	27	53
32	29	14	43	24	I5	39	37	28	65
33	42	16	58	26	I5	4 I	54	23	77
34	53	I6	59	29	I7	46	38	24	62
35	38	25	63	23	IE	4 I	32	32	64
36	23	22	45	13	İ	$3 I$	23	26	49
37	I7	31	48	I3	26	39	19	29	48
38	IO	39	49	9	29	38	9	35	44
39	3	29	32	7	20	27	3	$2 I$	24
40		22	22	4	I3	I7	2	I8	20
4 I		I2	I2	2	9	II		IO	IO
42		7	7		5	5		5	5
43		4	4		3	3		4	4
44		I	I		I	I		I	I
45								I	I
Relative number (\%) 553	447	1000	552	448	1000	492	508	1000
Mean length		32.62	3 I .22	29.56	3I. 67	30.51	30.01	32.46	3I. 65
		. 3051	6829	4485	3644	8 I29	2412	2490	4902
indiviouaz 3778 les measured									

Table I4. Mean number of cod eggs per one vertical haul with eggs net at all the sections, I970-I974.

Year		Number of stations	
1970	6-25 May	84	E. 2
I971	5 May - 5 June	82	3.2
1972	I6 - 25 May	55	5.9
1973	I4 Mey - 23 June	II2	2.9
I974	I8 May - 6 June	71	I6.0

Table I5: Age composition (\%) of
capelin in Subdivision 3 N , May - June I974.

crustacians in Subarea 3 K and 2 J . To the end of October the rate of fat condition for capelin reached 30%.

SUBAREA 4.

A. Status of Fisheries

Silver hake. This fish species was successfully fished in the Bable Island area throughout the period from January up to October. In I974, this fish species prevailed in number in the catches like it was in the previous years. The bulk of Was
catchesh madehtwo jear - classes, namely, that one of 1970 , fish aged 2 - 29.3% and the year - class of I97I, fish aged 3 - 44. 3.0 , see Table IG. The abundance indices testify to the fact that silver hake stocks increased in autumn 1974 in comparison to the same period in 1973 (Table I7). Therefore, one can expect that silver hake stocks will remain at the high level both in 1975 and 1976. The quota of IO8 thousand tons was established to the USSR on silver hake inhabiting Subarea 4. Available silver hake stocks will allow to take this queta without any difficulties.

Table I6. Age composition of silver hake catches in Division 4 W , the Sable Island (\%\%).

Table I7. Mean catch of silver hake for 30 min. trawling with trawl "Silver hake - 8I5" in the Emerald Deep, I972 - I974.

Years	I	I972	I	$I 973$	I

Herring. In I974, there were not observed commercial concentrations of herring in the area of Banquereai Bank. The catches taken by scouting vessels consisted mainly of individuals aged 3 to 6 years. In summer, herring of the Nova Scotia stock were taken in large number in the waters of Browns Bank. The bulk of catches made individuals with the boay length of 27-34 cm and 4-6years of age (see Table I8).

Table I8. Age composition of herring catches in Division 4 X (in \%7)

Years	A E e							
	3	I	I	$5 \frac{1}{I}$		I 8	9	Total
1973	I6.2	75.1	7.5	0.8	0.4	-	-	ICO. 0
I974	0.3	9.6	64.6	25.0	0.3	O.I	0.1	IOO. 0

Argentine. In I974, the argentime fishery was not intense at all like in 1973 as this fish species did not migrate out of limits of a zone introduced to $4 \mathbf{X}$ during their apawning period. The bulk of catches taken in the waters of Browns Bank made individuals from 6 to 13 years of age and those taken on the Emerald Bank consisted mainly of fish aged 5 to I4 years (Table I9).

Taking into account the fact that a complex age structure is proper to argentine and that the fishery of this fish was not intense during the last years, one can suppose that the argentine stocks will keep their previous level even in 1975 and 1976.

Table I2. Age composition of argentine in Subarea 4, \%.

B. Special investigations

Oceanography. In I974, special investigations of the long - tem fluctuations in the heating background proper to shelf waters were continued. The picture of the heating background may be represented by comparing the indices characterizing depth at which the $5^{\circ} \mathrm{C}$ isotherm is passing in the waters of the Emerald Bink (Fig. I a), the minimum temperature of the cold intermediate layer at the Halifax section (Fig. I b) and the minimum temperature of that one in Eastern Channel (Fig. I c). Those indices stadied in their development throughout many years (Fig. I) show to the existence of a relative warming and cooling of shelf waters in the Nova Scotia and New England areas.

Thus, the I962 and 1963 years were relatively warm, the period from I964 up to 1966 was that one of a relative cooling, and in I967 some warming of water masses was firstly registered and it continues there nomays, but data obtained allow us to suppose that the period of water masses warming will be ceased soon for the Nova Scotia area (Fig. I a, b) and will yet be continued in the New England area (Fig. I c).

SUBAREA 5

A. Status of Fisheries

Mackerel. Early in the year, mackerel was caught in tl the Southerm New England and in the Norfolk Area. In April, the catch of the migrating mackerel was conducted in the southern part of Georges Bank. In summer, the concentrations of this fish were mainly fished on Georges Bank. The individuals aged from 2 fo 7 years were found in the catches. The year - class of 1971 prevailed in the catches, it made 29. 3 (Table 20).

Herring. The hering fishery was conducted from April up to October. In April, the vessels conducted the fishery near Nantucket, in May - in the north-east and north-west of Georges Bank. In Juae - August, herrink was fished within the area from the eastern up to the western part of Georges Bank, and in September - October it was conducted in its northern part. Herring was represented in catches by the specimens aged 2 to δ Jears, and the rich 1970 year - class prevailed in catches, it made up to 80% of catches on the average.

Table 20. AGe composition of mackerel

$$
\text { in the New Fingland Area, in } \% \% \text {. }
$$

[^0]Silver hake
in-habiting Subareas 5 and 6 is represented by two stocks (the Georges Bank stock - 52 e and the Southern New England stock - 5 Z w + 6). The first stock was intensively fished in spring and summer. The second stock was not exploited intensively owing to a number of limitations to fishery.

In 1974, the bulk of catches on Georges Bank made individuals with body length from 27 cm up to 35 cm , at the age from 3 to 5 years, their share made 82.5% in the total catch (Tyble 2I).

Table 2I. Age composition of silver hake in Subareas 5 and 6 in \%\%.

Age I	Georgés Benk		TSouthern New England			
	I? 72	1973	I 1974	1972	I975	I:74
I	-	0.3	3.0	-	-	4.2
2	-	2.6	7.5	-	-	\%. 2
3	II. 7	44.2	30.4	22.0	I.I	$2 I .4$
4	42.2	35.5	35.7	54.4	22.3	32.3
5	21.0	9.8	16.4	20.3	42.9	2I. ${ }^{\text {a }}$
6	U.	3.1	3.7	2.5	I7.2	T0. ${ }^{\text {c }}$
7	8.5	2.3	I. 6	-	I4. 3	3.6
8	3.6	1.5	0.7	-	0.9	I. 6
9	I. 4	0.5	0.2	-	0.7	I. 2
IO	I. 7	0.1	+	-	0.I	0.2
II	I.I	0.1	-	-	-	-
Total	100.0	100.0	100.0	100.0	100.0	100.0
itear abe	4.92	3.82	3.76	4.03	5.28	4.27

Fish of 3 through 5 Jears prevailed in number in the Southem Hev Enelend as well (75.4\%) . The results of trawl survey completes in autum 1974 showed that this fish species sligntly decrecsed in murnher on Georges Bank and considerably reduced in the Southern Iev Encland (mible 22).

Table 22. Indices of silver hake abundance (catches for 30 min , trawling in pounds).

Red hake.
This fish species was exploited on Georges
Bank throughout the spring period up to October. In the Southern New England the fishery was conducted only in the first half of the year and was not intense. Fish at the age of 2-5 prevailed in the catches taken on Georges Bank, those aged 2 through 4 - in the catches taken to the west of the Bank area (Table 23). Data of trawl survey of this year showed to a sharp decrease of the red hake stock in the Southern New England. The abundance of red hake remained at the level of the previous year on Georges Bank. In I976, the quota equal to 26 thousand tons may be established to fish on Georges Bank owing to some increase in red hake stocks.

Table 23. Age composition of red hake catches, the New England area, in \%\%

Age	I Georges Bank			I Southern New England		
	I 1972 I	1973 I	1974	I 1972 I	1973	$\text { I } 1974$
I	-	-	-	-	-	0.3
2	I3.4	5.7	II. 0	49.0	3.5	35.7
3	40.6	21.9	23.9	36.2	17.3	29.5
4	23.0	44.1	37.0	I2.5	40.9	26.6
5	II. 8	I5.5	I5.7	I. 9	19.9	2.9
6	6.5	7.4	6.3	0.4	8.4	3.5
7	3.9	4.2	4.9	-	5.7	I. 2
6	0.5	I. 7	0.9	-	4.0	0.3
9	0.2	0.1	0.3	-	0.3	-
'rotal	100.0	100.0	100.0	100.0	100.0	IOC.0
Mean age	3.72	4.18	4.02	2.68	4.47	3.13

Squids.
In I974, the commercial concentrations or squids were observed during the period from hoy up to the autum. Concentrations of shortfin squids were not stable. Therefore, this year the conditions of their fishery were worse than in I972 and 1973.

In the summer period the bulk of catchesfmader whortfin squids of from 6 cm up to 25 cm in length, their mean length was $I 9 \mathrm{~cm}-20 \mathrm{~cm}$, and in the autumn period these squids were from I5 cm up to 28 cm in length, their mean length was equal to 20 $\mathrm{cm}-22 \mathrm{~cm}$.

The squids stocks were exploited not so intensively. The possible annual catch may be more than $I 00$ thousand tons in Subareas of Nova Scotia, New England and Norfolk according to data of trawl surveys.

B. Special investigations

I. Environment

Oceanography. Basing on calculations of data obtained as the result of seven oceanographic surveys of I972 and I973 covering the summer - autumn seasons, the principal scheme or the geostrophic circulation was obtaihed for the area of Georges Bink (Fig. 2). The scheme given here represents the stationary and the quasistationary cycles of water typical for the surmer and autumn periods, and the upwelling areas are designated as I on tie scheme and the areas of the sinving water mass as 2. Stationary upwelling areas are registered in the Eastarn and Southern Channels and tne areas of sinking water mass - in the central part of the Bank and the lVantucket shallows. Quasistationary areas of the up relling vater mass are found along the southern slopes of the Bonl: in June - July, and some later, in August - September these areas are formed along the northern slopes. It should be noted here that these areas are formed in the spawning grounds of silver hake, red hake and herring, and the formation of these areas coincides in time with the spawning period of fish species mentioned above.

Hydrochemistry. In I974, the collection of samples used for determination of biogen content was continued in August and October. The samples were taken from board SRTM - 0015 and RTM "Belogorsk" in time of performing the ecological surveys. Samples taken in 1973 are completaly treated and analysed to the wresent moment. In August I973, phosphate content in the waters of Georges Banj fluctuated in the surface layers within the range from 0.5 up to 1.0 mkg atom per litre. In October, the phosphate content decreased and made $0.2-0.5 \mathrm{mkg}$ atom per litre. The phosphates are brought to Georges Bank with Gulf Strean waters, besides, those matters appear as the result of atmospheric processes.

In August 1973 the nitrite concentration in the suriace layer was equal to the analytical zero and in October it made 0.2 - 0.3 migg atom per litre.

In August, the nitrate content in the surfece vaters of Georges Benk was equal to $2-3$ mleg atom per litre, in October it fluctuated from 0.5 up to 0.3 mkg atom per litre.

The silicon was observed in a great volume in the suriace water layers of Georges Brnk.

The anclysis of the content of the biojen elenents in IV73 confirmed tne conclusion made by Riley and others on a treater limit role of nitrates on primary production in comparison to tros otiner biogen elements.

Zooplaniston. In 1974, the collection of zooplankton samples vas continued on board R/V "Chronometen", SRTE - SOI5 and "Beloyorsk". 540 zoopleniton samples collected in I9\%2, I973 and partially in I974 were treated in the laboratory conditions. Presently, maps of seasonal distribution of seston and of feeding zooplankton forms are almost completed, data for the period I962I973 were used in the maps. The results of I962 - I973 investigations were used there.

Ichthyoplankton. In I974, standard observations for the distribution and the number of eggs and larvae for silver hake and red hake were continued, that was done on board SRTM - 8015 in Jvly, August and early in Sertember. In October the counting of herrine larvae was made on board RTM "Belogorsk" according to tinc International Program. The first collection of ichtnyoplanktor samples wes performed on board the R / V ECinnonometer" in Februery anc Merch of the current year.

The somples taken in 1973 and 1974 were treated in laboratory conditions. The analysis of data obtained will be completed after tire collections will be finally treated in the beginning of 1975.

Studies of nutrition of herring, silver hake and red hake larvae

In I974 the treatment of silver hake, red hake and herring larvae was continued. In total, I6I specimens of silver haire larvae and I95 of red hoke ones collected in swimer I973 were breated. The content of intestines of heming larvae was an lysed to I955 specimens collected in autumn I972 and I973. As result, one can make the conclusions as follows: in July and August herring larvae were mainly fed on copepodites, and red hake larvae fed on nauplia and Gladocera. Copepodites pgevailed in number in
the food taken by herring larvae. In I972 the intensity of feeding of these three sjecies laxvae was lower than in I972.

Fic. I. Fluctuation curves of the indices characterising the heating background of waters in the Nova Scotia nnd lew England areas for the period from Igbs up to I974.

Fis. 2. Frincipal scheme of the geostophic circulation in the Georees Bank area for the summer-autumn period.

[^0]: $x /$ Age composition is represented according to data submitted by the USSR, Poland, GDR and Bulgaria.

