NINTH SPECIAL COMMISSION MEETING - DECEMBER 1976

Relative asseasment of mackerel stock in the ICNAF Area
and forecast of the possible catch in 1977

by
L.S. Ivanov
Research Institute of Fisheries
Varna, Bulgaria

Introduction

Aim of the present paper is to make a relative assesament of changes which oocur in mackerel stocks in the ICNAF Area and to give a forecast of the possible catch from this Area in 1977, on basis of Bulgarian data aolely on age and size composition, and also on catch per hour fished for the Jamary-March quarter, as processed by F.P.A. The results we obleained, were then compared with those of sTACREs (IGNAP Redbook 1976,p.110,table 22).

Materials and Methods

The Bulgarian distant-water fishing fleet entered into the mackerel fishery in the ICNAF Area in April 1969. In the subsequent 1970-1976 period this fishery tha carried out mainly during the January-March quarter. In this season, the reoords of the catch per hour fished and of age-and size composition are comparatively the most indicabive of the changes that occur in ICMAF's mackerel stocks and we used them in making the present relatpve assesament of these stocks by virtual population analysis (V.P.A).

The age-structure, the weights and sizes of the mackerel caught during the January-March fishing season (for 1969 of lpril's fishing operations only) are shown in tables 1 and 2. As can be seen, the average body weights and sizes by ages for the 1969-1976 period are estimated in two ways, viz, as averages by ages and as averages by year-classes. The average weights as ob-
tained by both ways, we used in cases where records are not available, e.g. for $1965-68$ and 1976 respectively. To make a comparison, in Table 2 are given the theoretic body sizes and weights as estimated by using the Von Bertalanffy's formula and the following parameters we established, i.e.
$W_{\infty}=789.1 \quad n=3.42$
$L_{\infty}=41.86 \quad k=0.252 \quad t_{o}=-1.81$
The catches per hour fished (in numbers) by ages of the Bulgarian distant-water fishing vessels during the January-March quarter are shownin Table 3, except for the 1969's because the mackerel fishery began in April and also because it was not strictly directed. The records were then processed by V.P.A., taking $M=0.3, F_{2+}=0.60$ and $F_{1}=0.05$ for the 1976, For the $1965-69$ period, $\mathbb{F}_{2+}=0.1$, and $\mathbb{T}=0.001$ respectively. The year classes' strenght was successively restored to age 1 of its initial numbers in 1970 and $B=0.67$. The estimated strenght of the 1961 year-class waskuccessively multiplied by 0.67 and found the numbers of the 1954-1960 yoar-classes. The extreme age was assumed to be 11 years. The estimated and admitted values of F are given in Table 4.

Results and Discussion.
The assessments we obtained of the relative abundance of maekerel expressed in numbers for the 1955-1976/N) and in biomass (B) are plotted in Figs. $1 \mathrm{a}, \mathrm{b}$.

Against each year are fitted in the stock numbers of N_{3+} (age 3° and older), H_{2+} (25% of age 2 fish, plus 100% of all older age-groups), N_{2+} (50% of age 2 fish, plus 100% of all older agegroups), H_{2+} (age 2 and older) and N_{1+} (age 1 and older). In the same way is fitted in the stock biomass (Fig.1,b). The recruitment at age 1, in numbera, is fitted in againgt the respective birth year. From these data it is quite clear that the stock, as appraised by V.P.A. on basis of Bulgarian catch per hour fished records during the January-March quarter, shows an increase both in numbers and in biomass in 1976, this increase depending on the better strenght of the 1973 and 1974 year-classes.

In Figs. 2 and 3 against each year are fitted in the spawning stocks in numerical expression (N) and in terms of biomass(B) and also the numerical strenght of the recrutment at age 1, as obtained by our own assessments and those of sTACRES (ICNAF Redbook 1976, p.110. Table 22). 4s a matter of fact, the figures express the relationship between stock and recruitment in a developed form (by years), and also reveal the existing trends in mackerel reproduction. Between our own relative stock assessments and those of STACRES substantial differences are observed as to the 1976 due to different appraisals of the 1973 and 1974 yearclasses. The assessments in view of forecasting the possible total allowable catch also differ, and to a major extent, as to the 1975 year-class strenght and as to the 1975 spawning stock. Our optimistic expectation of an acceptable strenght of the 1975 yearclass is based on our own notes of Bulgarian distant-water fishing fleet catches during the 1975's January-March season (when the vessels operating in the ICNAF Area hardly found grounds without presence of this generation), and also relies upon the generally admitted "stock-recruitment" relationship which supposes apperance of strong year-classes in 1976 and 1977 too. If we assume that our expectations are real, then the fishing mortality in 1977 can and must be retained at its 1976 level,i.e, $F_{2+}=0.6$.

The possible total allowable catch (IAC) in 1977 (or C_{77}) can be calculated by using the formula:
$\mathrm{C}_{77}=\frac{\text { B }_{77} \cdot 076-\mathrm{O}(1-8)}{\mathrm{B}_{76} \mathrm{E}(1-8) 76}$
where C_{76} - the expected 1976 catch of all member countries $=$ 252224 tons
B_{76} - assessed relative 1976 stock biomass at age 2 and older $=16652 \mathrm{kgs}$ (Fig. $2 \mathrm{~b}, \mathrm{~B}_{2+}$)

B77 - assessed relative 1977 stock biomass at age 2 and older $=17152 \mathrm{kgs}\left(\mathrm{FLg} .2 \mathrm{~b}, \mathrm{~B}_{2+}\right)$

77	E (1-8) 77	0_{77} (expected 1977 TaC)
0.6	0.395	259797 tons
0.5	0.344	226254 "
0.4	0.287	188764^{*}
0.35	0.257	169033 "

Keoping in mind that the assessments we made of the fishing mortslity (F) for the 1965-1969 period, and also the atock values for the sare years can differ from the actual ones, and with the purpose of creating major exploitable and spamaing atocks in the ICNAF Area, one can admit a F-value equal to 0.45. In thia case, by $5(1-8)=0.317$, the 1977 TAC $\left(-0_{77}\right)$ will be of the order of 208496 tons 210000 tons.

Table 1 - Age structure by numbers of mackerel caucht by 3ulgärian distant-water fishing fleet in the ICNAF Area (meighted average for the Januarymarch adurter) in $0 / \infty$

Tajl. 2 - Average weight and lenght of NW-Atlantic mackerel (ICNAF, s' Subarea 5 and Statistical Area 6)

$\begin{aligned} & \text { Year } \\ & \text { (Jan-Mar) } \end{aligned}$	$A \mathrm{~g}$ e											Avenage weight (gms)
	1	2	3	4	5	6	7	\checkmark	צ	10	11	
	Weight (gms)											
1469	106	142	256	401	461	580	594	619	637	639	-	167
$1 y^{2} 70$	64	196	203	321	415	564	5:3	-	641	704	-	229
1471	82	138	253	262	376	489	545	581	688	634	-	237
$19^{\sim} 72$	97	190	233	309	324	416	557	564	575	630	'736	300
1973	80	150	280	314	354	382	486	558	657	-	-	219
1974	80	169	261	344	384	416	445	509	626	-	-	273
$13^{\prime \prime} 5$	60	144	250	331	425	470	505	524	570	636	-	152
1476	79	163	268	373	445	501	532	576	603	645	680	224
Average	80	162	250	334	308	477	532	563	612	646	r12	-
$\begin{aligned} & \text { Average } \\ & \text { by Eeas } \end{aligned}$	80	164	252	329	389	460	518	550	602	641	417	-
$\begin{aligned} & \text { Averare } \\ & \text { by Bothons } \end{aligned}$	80	163	251	332	394	468	525	556	607	644	714	-
TWh+omit avera	77,5	151,5	235,5	321,0	400,5	471,4	532,6	583,6	625,5	660,0	608,1	-

$\begin{gathered} \text { Year } \\ \text { Jan.-Mar. } \end{gathered}$	A 6 e											Average (cms)
	1	2	3	4	5	6	7	8	9	10	11	
1969	22,5	24.9	29.7	33.6	36.0	37.5	38.0	38.5	39.0	39.5	-	25.8
1970	19:8	26.3	26.5	32.4	35.2	37.5	38.5	-	39.5	40.5	-	29.3
1972	21.6	25.5	30.4	31.4	34.2	37.2	38.3	38.8	39.4	40.0	-	29.4
1972	22.5	28.2	29.8	32.3	32.7	35.3	38.5	38.8	39.0	39.8	41.5	31.8
1973	21.2	26.0	31.0	32.2	33.3	34.1	36.5	38.2	39.4	-	-	28.2
1974	20.8	26.6	30.5	32.8	33.8	34.8	35.5	37.0	39.0	-	-	30.3
1975	19.8	25.7	30.3	32.8	34.8	35.8	36.5	36.8	37.9	39.3	-	25.0
1976	20.4	26.1	30.3	33.1	34.8	36.1	36.7	37.5	38.0	38.6	39.5	27.9
Average	21.1	26.4	30.1	32.6	34.4	36.6	37.3	37.9	38.9	39.6	40.5	-
	21.2	26.7	30.4	32.8	34.4	35.9	37.1	37.7	38.5	39.2	40.0	-
$\begin{aligned} & \text { Average } \\ & \text { by wofth } \\ & \hline \end{aligned}$	1.2	26.6	30.2	32.7	34.4	36.0	37.2	37.8	3ヶ.7	39.4	40.2	-
Theoret, average	4.2	25.8	29.4	32.2	34.3	36.0	37.3	38.3	39.1	39.7	40.2	-

Table3 Bulgarian mackerel catcies in numbers and toval in numbers and kims per bour fisked during the January-March fishing season

	1	2	3	4	5	6	7	8	9	10	11	Totersintermsof	
												Numbers	Kga
1970	24	387	19136	42'6	121	97	48	48	24	-	-	24161	5533 .
1971	747	9578	1521	11926	2295	107	160	213	80	53	-	26680	6280!
1972	14	1147	3580	1552	6405	1161	28	14	42	28	14	13985	4195
1973	2660	13217	1015	3902	1431	3362	312	52	26	-	-	26017	5696
- 1974	179	7189	5756	1394	2669	1016	1414	239	60	-	-	19916	5437
1975	10818	15459	2368	1312	640	672	320	320	64	32	-	32005	4865
1976	3072	15510	7116	1764	1217	547	808	388	182	61	30	30411	6812

Table 4 - Fishing mortality (F) in ICNAF Area (Subarea 5 and Statistical Area 6) mackerel as assessed after Bulgarian catch per hour fished records, assuming $M=0.3$

$\begin{aligned} & \text { Yēē } \overline{\hat{r}} \\ & \text { class } \end{aligned}$					Fishin	season	nuax	rch)				====-
1954	$=\begin{aligned} & 1965 \\ & (0.1) \end{aligned}$	$=1966$		$=196$	$=1969$	$=1279==$	$=19^{m} 1=$	$1=2972==$	-1973 $==$	$1{ }^{2} \underline{L}^{2} 44=$	$\underline{1} \underline{1} 5$	$=2 \underline{2} 6=$
1955	(0,1)	(0,1)										
1506	$(0,1)$	(0.1)	(0.1)									
1957	(0.1)	(0,1)	(0.1)	(0.1)								
1958	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)							
1969	$(0,1)$	(0.1)	(Q.1)	(0.1)	(0.1)	(0,300)						
1960	(0.1) 4	(0.1) 1	(0.1)	(0.1)	$f(0.1)$	(0,300)	(0.700)					
1961	(0,1) ${ }^{\text {a }}$	(0.1)	(0.1)	(0.1)	$\frac{(0.1)}{}$	- (0.320)	0.020	0.600				
1962	(0,1)	(0.1)	(0.1)	(0.1)	(0.7)	(0.110)	0.670	0.600	(0,600)			
1963	(0.1)	(0.1)	(0.1)	(0.1)	(0.1)	- (0.100)	0.990	0.600	(0,600)	(0.600)		
1964	(0,001)	(0,1)	(0.1)	(0.1)	$(0.1)+$	$-(0,110)$	0.290	0.165	0.600	0.600	(0.600)	
1965		(0.001)	(0.1)	(0.1)	(0.1)	-(0.090)	0.145	0.06	0.160	0.310	0.300	$(0,6)$
1966			(0.001)	$\frac{(0.1)}{(0.001)}$	(0.1)	- 0.430$)$	0.500	0.590	0.340	0,540	0.300	(0,6)
1966				(0.002)	$\frac{(0.1)}{0.001)}$	0.360	0.450	0.530	0.680	0.790	0.460	(0.6)
1969					,001	-0.001)	0	0.145	0.730	0.480	0,300	$(0,6)$
1570						(0,001)	0.310	0.200	0.390	0.585	0.315	$(0,6)$
1971							0,050	001	0.155	0.380	0.330	(0.6)
1972								(0,001)	0.580	0.620	0.310	(0.6)
173									0.110	0.530	0.370	(0.6)
1974										0.004	0.545	$(0,6)$
1975											0.210	(0.61)
\%89\% ${ }^{\text {P }}$	0.1	0.1	0.1	0.1	0.1	0.262	0.333					(0,050)
$\mathrm{F}_{2+2 \mathrm{agai}}$	ast		0.1	0.1	0.1	0.262	0.333	0.275	0.520	< 0.557	0.472	0.6

Fig. 1. Relative assessment of mackerel stocks in the ICNAF Area expressed as blomass (B), numbers (N) and as year-class strength in numbers at age 1 by using the VPA method, calculated on the basis of records of the Bulgarian catch per hour fished.

Fig. 2. Numberical abundance of the spawning stock, including 50% of age 2 fish and 100% of all older age-groupe and recruitment at age 1 .
(1) Relative spawning stock (Bulgarian data). (2) Relative recruitment as year-class fish at age 1. (3) Spawning stock after STACRES (ICNAF Redbook 1976, p. 110, Table 22). (4) Recruitment as year-class at age 1 (Ibid., p. 110, Table 22).

Fig. 3. Biomass of the mackerel spawning stock
(B) including 50% of fish at age 2, and 100\% of all older age-groups, and recruitment at age 1 in numbers (N).
(1) Relative spawning stock (Bulgarian data). (2) Relative recruitment as fish at age 1 (Bulgarian data). (3) Spawning stock after STACRES (ICNAF Redbook 1976, p. 110, Table 22). (4) Recruitment at age 1 after STACRES (Ibid., p. 110, Table 22).

