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The IIsimple ll mathematical models of fisheries studied by Schaefer 

(1954, 1957, 1968) and modified by Pella and Tomlinson (1969), Fox (1970) and 

Walter (1973) have a number of advantages over the detailed models of 8everton 

and Holt (1957) or Ricker (1958). They require only catch and effort data for 

their implementation and they are able to predict the future course of the 

fishery. Yet they are not as widely used as the latter. One reason is that 

the usual result of their application is a number giVing the maximum sustainable 

yield under equilibrium conditions. However, since most exploited fisheries are 

not in a state of equilibrium (Edwards and Hennemuth, 1975), this number is of 

little practical value. This has been partially rectified by Walter (1976) who 

established techniques for regulating catch under nonequilibrium conditions. 

There is another. perhaps more important. shortcoming of the simple 

models. That is their failure to respond to changes in year class strength 

which they treat as noise. Yet these changes are often considerably greater 

than the systematic changes incorporated into the model (see Walter and 

Hoagman (1975) for examples in which the year-class strength varies widely). 

Accordingly, in this work, a modification of Schaefer's model is 

introduced. It separates instantaneous growth into two components, one of 

which corresponds to individual growth and mortality and the other ,0 
recruitment. The model will be structured so that both components may be 

assumed density-dependent. Recruitment will be assumed to occur instantaneously 

at the beginning of each year though not necessarily to be of one year-class. 

A number of different assumptions about recruitment will be made and the 

consequences explored. Both equilibrium and nonequilibrium strategies for 

exploitation are derived. The model is then applied to the mackerel stock of 

* Research done in part during author's visit to Northeast Fisheries Center, 
Nnaa Unn~~ u~lo MA 
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the Northwest Atlantic. The parameters are estimated by using the existing 

Schaefer model for this stock and modifying it by using age structure data. 

Historical catch data going back to 1876 is used to estimate the frequency of 

large year classes. The model is then used to predict the future size of the 

stock based on several different assumptions about fishing mortality and 

recrui trnent. 

The Model 

The form of the model will be 

1 dP 00 
p at = b - aP + i~-oo ri 6(t-i) - qf (1) 

where P is the biomass of the stock in question and f is the fishing effort. 

The symbol 6(t-i) stands for the unit impulse at time t=i which has the property 

that 6(t-i) = 0 for t ~ i, but [006(t-i )dt = I. It is the general ized derivative 

of the unit step function, the function which is zero for t ::. i and 1 for t > i. 

The left side of the equation is the instantaneous rate of change 

per unit mass of the biomass. The right side has an expression for the 

individual growth and natural mortality rate (b - aP), for the growth rate 

due to recruitment (Eri6(t-i», and for the fishing mortality (qf). 

In the absence of fishing, the solution to the equation has the form 

pet) = ___ -=b/..:a-= __ 
l-U-b/aPole-bt 

(2) 

in any given year when the biomass is Po at the beginning of the year after 

recruitment. The solution will be shown to have a jump due to recruitment at 

the beginning of the year, 

P(i+) = P(i_)."i (3) 

where P(i-) is the biomass in the ith year before recruitment and P(i+) after 

recruitment. The biomass will vary in time as shown in Figure 1; it tends toward 

the level bla in the course of the year and jumps to a new level at the start 

of each year. 

The relation (3) between ri and the biomass of recruits each year 

may be derived by using the properties of the unit impulse. Indeed if we 

integrate over a period of time from just before the beginning of the kth year 

to just after the beginning we obtain the following equality: 

(4) 
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k+e . 
Since !k-E o(t-,)dt = 0 when k I i, the last expression reduces to the single 

constant. The integral on the left may be evaluated directly as 

tn P(k+~) - tn P(k-E) =to m:: l 
We now take the limit as E approaches 0 to obtain 

tn P(k+O) 
P(k-O) = rk 

(5) 

(6) 

By writing this in exponential form and replacing k by i, we obtain (3). 

Let us denote by Rk the biomass of recruits in the kth year; we 

assume that all recruitment takes place at the beginning of the year and 

accounts for the difference between the two values of stock biomass in (6). 

That is, 

P(k+O) - P(k-O) = Rk (7) 

from which we are able to derive the expression 

(8) 

This enables us to calculate rk since Rk/P(k-O) is the ratio of recruit to total 

biomass at the start of the kth year. 

Steady-state Analysis 

It is clear from the assumption and Figure I that there is no state 

of constant equilibrium under which growth exactly balances fishing mortality. 

However, it is possible to consider the long-term behavior of the fishery. 

That is, average annual behavior when the fishing effort is always the same f. 

We consider the behavior over a period of time from 0- to T- (just before 

recruitment). By integrating equation (I) over this period of time, we obtain 

£H-) - T-I 
tn 1'"('0-} = T(b-aP) + i!ori - Tqf, (9) 

where ~ denotes the mean population biomass. If we divide both sides of (9) 

by T and then take the limit as T approaches infinity, we obtain 

o = b + r - a1' - qf (10) 

the steady-state equation. Here r denotes the mean recruitment rate. The 

average annual yield under this hypotheSis is given by 

y = L /- 9 f P = q f l' = !tf....(b+r - qf) 
T ~ a 

(II ) 
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which 1s exactly the same expression as in Schaefer's model. Thus the analysis 

of the long-tenm equilibrium or steady-state would be the same for both models. 

Now, however. we are able to introduce a stock-recruitment relation and revise 

the optimum levels of f accordingly. 

We first find the relation between' and the average biomass P- just 

prior to recruitment. This may be done by replacing r in equation (10) by 

In(~_ + 1) Where;_ is the mean (geometric) ratio of recruit biomass to population 

biomass. Then (10) becomes 

o = b + 'n (~_ + 1) - a1' - qf. (12) 

This equation may be used to calculate the yield under certain simple stock 

recruitment relations. those in which recruitment is proportional to spawning 

stock which 1n turn is proportional to stock biomass at some instant of time 

in the year. By adjusting the constants appropriately we· may assume that the 

instant is just prior to recruitment. i.e .• 

R'" aP- (13) 

The yield equation again has the same form as (11) 

y = 9f (b + ,n(a+I)-qf) (14) 

which again is analyzed as is Schaefer's yield equation. 

It is when the recruitment is assumed to be a relationship other 

than proportional that complications arise. We now hypothesize that recruitment 

R is a function of P of the form 

R = aPG(P) (15) 

where G(P) is the density-dependent factor. Ricker (1975) assumes it to be of 

the form G(P) '" (1 + ap)-l in some cases and G(P) '" e- aP in others. In either 

case it ;s a monotonically decreasing function such that G(O) '" 1 and G' (0) '" -6. 

The yield now becomes 

y = gf (b + ,n(aG(P) + I) - qf) 
a 

where P and f are not independent but must satisfy equation (12). 

(16) 

Here the P is the P- of equation (13), the stock just before recruitment. 

We may express Y in terms either of f or of P by eliminating the other between 

equations (12) and (16). 

The equation (12) relating f and P is too complicated to solve directly 

since Proust be expressed in terms of P and R. However, if we make some 
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approximations, we can express equation (12) as an approximate linear equation 

and thus solve for P. We assume therefore that 

'n(aG(P) + 1),",aG(P) 

and 

G(P) 1 - aP 

(17) 

(18) 

(19) 

These are the standard linear approximations in (18) and (19) while (17) is 

valid when RIP is relatively small. Then equa~ion (12) may be expressed as 

a + a - (a + aa)p - qf. 0 (20) 

and the yield equation ;s 

(21) 

Thus the effect of density dependence on recruitment will be to lower the 10ng­

term average yield. This can be seen by comparing the estimates obtained by 

(21) when a • 0 to a > O. 

If these approximations are not valid. in particular when recruits 

constitute most of the biomass each year, the comparison is not so simple and 

is shown in Figure 2. The maximum yield is lower in the more highly density­

dependent case, but not necessarily the yield for a particular level of effort. 

Transient Analysis 

Few of the world's fisherjes have in recent years been in a state of 

equilibrium or even close to it. Recently Walter (1976) presented a method for 

regulating a fishery under conditions of nonequilibrium. The approach was 

based on the Schaefer model and thus did not take into account year-class 

strength. Many of the same results apply equally well to the present model with 

the added provision that year-class strength may be taken into account to choose 

the best strategy. 

The yield in year n may again be calculated by integratjng qfP 

from n-1- to n-, and substituting equation (1) for P. 

(22) 

The relation between P(n-) and P(n-1-) in turn may be obtained by 

using equations (2) and (3), 

P(n-) • _____ --'-(b"'-"'q'-:f~~!"-a __ -,--_ 

1-{1-(b-qf)!aP(n-1-)e n-1}e-b+qf 
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The effort must now be chosen in some way such that yield is optimized. 

If the fishery has been well regulated so that the biomass at the beginning of 

the year is close to the optimum level, a reasonable approach would be to choose 

f so that the biomass returns to the same level at the beginning of the 

subsequent year. Then the last term in (22) is 0 and the yield (which conserves 

biomass) is again a quadratic function of f (see Figure 3). The term rn_1 will 

determine which of the curves apply in a particular year. 

However, we are not free to choose f as in the steady-state case 

since f must be chosen such that (23) is satisfied as well for P(n-) = P(n-I-). 

We may combine (22) and (23) most easily by integrating ;(2) directly over the 

nth year and replacing Po by P(n-I+), and b by q-qf. 

( b-qf I) 
Y = 9!. tn p(n-I+)a\ f- + !. n a -q 

(24) 

If we now approximate tn (I+x) by x and eX by I + x we fihd that, approximately, 

Yn = qf P(n-I+). (25) 

We may plot these values on the same plot as the graph as equilibrium 

yield and find the point of intersection of the two graphs (see Figure 4). The 

value of yield at that point is the yield attainable under the conditions of 

recruitment and initial population for that year. Of course greater and smaller 

values of yield are possible but would have the effect of decreasing or increasing 

the population. 

In a well-regulated fishery the point of intersection will be close to 

the maximum if the recruitment is abou·t average. However it is possible the 

recruitment is not average or the fishery is not well regulated. In either of 

these cases an alternate strategy must be devised. 

The alternate strategy will be designed to approach the long-term 

optimum levels of yield and fishing mortality (or effort). That is, the 

population level should be adjusted up or down to approach, as closely as possible, 

the optimum P(n-), = (b+r)/2a. If the year-classes are of average strength, 

and the initial value of P while below the optimum is not so low as ·to endanger 

the stock, a good strategy would be to set the effort at the optimum and allow 

the fishery gradually to recover (as was described in Walter L197§7). The yield 

would then be approximately 

y = ¥ P(n-I- )ern- I (26) 

The same is true if the initial value of P is above the optimum. The yield 

for the optimum level of effort would again be given by (26). 
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If the recruitment for a particular year is above average, the yield 

given by (26) is too conservative. A larger yield is possible while still 

allowing the biomass to approach the optimum. The opposite of course is true 

for a smaller than average recruitment. 

If the population is below the optimum at the beginning of a year 

and the recruitment is above average. it is possible to allow the fishery to 

recover somewhat while still taking an above-average yield. In this case the 

desired ratio of population biomass for two successive years must first be 

specified. The fishing effort to maximize the yie·1d under this constraint may 

then be found. This is shown graphically in Figure 5. 

A more typical problem would be to find the optimum level of effort 

in ::the presence of varying year-class strength. Indeed the yield for n 

successive years in which the initial and final biomass are the same may be 

found from equation (22). It is 

y = 
n 
E y. 

i=1 1 
= !If. {(b-qf)n + 

a 

= !!!If. {b-qf+r} a 

n 
E 

i=1 

n 
E 

i=1 
~n (P(i-)-~n(P(i-l-)) 

(27) 

which is the same as equation (11). Thus the optimum level of fishing is 

f opt = b+r 
2q 

(28) 

The yield. however. will vary from year to year. It may be found by first 

calculating the biomass in year k in terms of the initial biomass and then 

substituting the value obtained into equation (24). The resulting formulas 

are excessively complicated but the calculations may easily be made in particular 

cases. 

A Stochastic Approach 

The number of recruits, rather than obeying any regular rule such 

as that in equation (15) seems usually to vary from year to year in a random 

fashion. Since survival to age of recruitment depends on many factors whose 

combined effect is multiplicative it is plausible that the biomass R have a 

log normal distribution. If the fishery is well-regulated by a scheme that 

keeps the population the same at the start of each year. then RIP has the same 

sort of distribution. If. moreover. the ratio RIP is small compared to 1. then 

the mean " may be estimated by 
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n n R· n R. 
if =...1 E Ri =..E. E i= P E 'n (i+ I) 

n i=1 n i=1 n i=1 

=f Pl'. 
(29) 

r:ri = n 

Since in the well-regulated fishery we are hypothesizing P = b+r, we have 
2a 

as our estimator 

if • (b+r)r 
2a 

(30) 

There seems to be no simple formula for the variance apart from using the 

historical data. 

We can now use these values of mean and variance to simulate the 

fishery by using random sequences of numbers for Ri (or ri) drawn from a log 

normal population. The population in successive years is given by (23) and the 

yield by (24). Various schemes for effort may be postulated. 

Another approach would be to use (30) to calculate the probability 

that the population will fall into a certain range or that the yield be at 

least a certain value. 

Fitting parameters 

While the Schaefer approach requires only catch and effort data, the 

model described here requires additional information about recruitment. The 

coefficient b'{intrinsic growth rate) in Schaefer's model must be split into 

two terms, b the individual growth, and r the average recruitment rate. This 

may be done in a number of different ways. If the (average) proportion of new 

recruits to the already recruited biomass is known, it may be used as an 

estimate of RIP and I' may be taken as 'n (~+ I). This may then be subtracted 

from b' to obtain b. 

An example - Mackerel in ICNAF Subarea 5 and Stat. Area 6. 

The Schaefer model for this stock was calculated by Walter (1976), 

based on the data of Anderson (1975) to be 

~~ =O.5{1- P )-lxW-6f. 
.ut 2.5 X 106 (31) 

The average instantaneous recruitment rate may be calculated from knowledge 

of the year-class strength which in turn may be based on age composition of 

the catch. The age composition estimates were found in 1975 ICNAF assessment 

report on Mackerel, pg. 45, Table 2. The number of recruits was taken to be 

the number of one-year-01ds, which was multiplied by the average weight as 
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corrected by And'erson. The resulting recruitment proportions and rates are 

given in Table 1. 

In order to use this model to predict the future course of the 

fishery, some sort of estimation of the expected year-class strength must be 

made. From the analysis of the years 1968 to 1975 given in Table 1, the 

recruitment rate seems to vary less than the year-class strengths. In fact, 

the rate r1 was stable about r = 0.1 except for the one year 1968 in which it 

was r = 0.6. 

We shall try to predict this population under various assumptions 

on recruitment~ One is that the recruitment rate be constant at the average 

rate r = 0.2 from 1976 to 1980, another that it be proportional to the spawning 

population, and finally that an occasional large year-class enters the fishery. 

The big problem, of course. is the last case. How often do large 

year-classes enter the fishery? While an exact estimate i.s difficult, we can 

make an educated guess by considering the historical catch data. It goes back 

to 1804 for the USA and 1876 for the Canadian catch. We shall use the latter 

since it Seems to contain fewer wild variations (see Table 2). 

We shall adopt the following procedure in order to estimate the 

frequency of large year-classes. It consists (roughly) of noting how often the 

catch jumps up beyond that consistent with the model. In order to do this we 

first filter out the years where an increase is followed immediately by a 

decrease. In such cases the increase was assumed not to have been caused by 

a larger year-class. 

In order to approach this quantitatively, we assume that the biomass 

and fishing effort are such that the combined mortality is close to the optimum. 

We also assume then that the catch is proportional to the abundance except for 

those isolated years mentioned above. 

If we assume that P and f are both optimum and the stock satisfies 

the model we have constructed then 

b+r b+r P = To and f = 2q . 

If we denote by Pi the biomass just prior to recruitment, and R; the 

biomass of recruits, then, the growth rate during the ith year is 

and hence 

b+r _ b+r = -r b - aP - qf = b - -2- "T 
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The annual recruitment rate r

i 
is given by 

R 
ri = in (p ~ + 1) , 

R·+P. 
= tn (-'-'-) 

Pi 

-P Pl+l 
= tn (er i+l) = r + tn Pi Pi 

We now assume 
p. 1 

that~ 
Pi 

y. 1 
is proportional to ~ and use this to calculate ri. 

Yi 
However, since ri cannot be negative we delete those years when it is and 

replace them by the average of the preceding and following years. This 

corresponds to those years for which Yi+1 < e-O. 2 = .819. We then consider 
. y. 

the remaining years for evidence of larJe year-classes. We classify a year-class 

as large if the recruitment rate is more than two times the average, (in 1968 

it was three times the average.) i.e. when ri > 0.4. This corresponds to 

Y~~1 > 1.22. This occurred 12 times in the 100-year history or approximately , 
once every eight years. 

Thus in the period from 1976 to 1980, we would expect at most one 

large year-class. The largest yield would result if it occurred at the beginning 

of the period. Accordingly, we assume that it occurs in 1976 and corresponds to 

a recruitment rate of 0.6 while the other years are such that the average is 0.2. 

We now consider five cases and project to 1980 using various assumptions 

about fishing effort and recruitment rate. 

Case 1: No fishing, recruitment rate r = 0.2 for each year. We use equation 

(23) to find the biomass each year prior to recruitment. It is: 

P(i+l- ) 
l-II_0.3/0.2·10-6p(i_)eO.2Je-0.3 

0.3/0.2'10-6 

The recruitment biomass Ri = Pi_(eO. 2-1) = 0.22 Pi-' The prognosis for years 

1976-1980 is given in Table 3. 

Case £: Moderate fishing F = 0.25, recruitment rate r = 0.2 each year. 

An F = 0.25 corresponds to f = 250,000 std. days. The equation (23) 

is now 

P = .05/0.2'10-6 
(i+l-) l-ll_.05/0.2'10-6p(i_)eO.2Je-0.05 

and the future course is given by Table 4. 
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Case 1· Moderate Fishing F = 0.25, recruitment rate heavy first year followed 

RI'. lower rate to make average 0.2. Results are given in Table 7. 

Thus the prognosis eVen in the most optimistic case is not too favorable. The 

recovery under moderate fishing will still be considerably less than the optimum 

which is 1250 x 103 MT. 

Case i· Heavy Fishing with F = 1.0 as f = 106 std. days. r = .2 ill years. 

The results are given in Table 6. Thus under heavy fishing, the yield would 

be very large initially but the stock would be reduced to less than 10% of 

the 1975 level. 

Case i. Moderate Fishing F = 0.25 recruitment proportional to population 

biomass two years previous. From the 1968 to 1975 data we find that the 

proportion is approximately 5%. Similar calculations lead to projections 

in Table 5. 

Year 

1976 

1977 

1978 

1979 

1980 

Ri 

115 

30 

20 

20 

20 

p. 
1-

270 

374 

392 

400 

410 

Yi 

93 

97 

99 

101 

103 

That is, the biomass will stabilize ot a level considerably below the optimum. 
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Table 1. Estimates of biomass after recruitment P(i+), recruitment Ri' 

and growth rate due to recruitment ri for the years 1968-1977 

for the mackerel stock of ICNAF Subarea 5 and Statistical 

Area 6 (Data from Anderson). 

Year i P(i+)(106 Kg.) R;(106 Kg.) ri 

1968 1974 912 .62 

1969 2529 374 .16 

1970 1986 254 .14 

1971 1816 119 .08 

1972 1556 135 .09 

1973 1177 76 .07 

1974 786 103 .14 

1975 574 80 .15 

1976 386 115 .35 
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Table 2. Historical landings data (MT) for Atlantic 
mackerel, 1876-1975. 

CANlIIilI 
Year Catch Year Catch 
1876 14,226 1926 5,239 
1877 22,479 1927 7,203 
1878 25,134 1928 ZO,368 
1879 25,999 1929 6,929 
1880 31,902 1930 8,095 
1881 14,702 1931 8,902 
1882 15,555 1932 8,094 
1883 17,523 1933 11 ,944 
1884 24,737 1934 8,656 
1885 20,285 1935 7,280 
1886 20,789 1936 10,326 
1887 16,418 1937 10,848 
1888 8,597 1938 12,953 
1889 8,647 1939 23,617 
1890 13,354 1940 16,209 
1891 18,397 1941 15,927 
1892 12,774 1942 13,748 
1893 10,222 1943 16,822 
1894 7,860 1944 15,546 
1895 5,776 1945 18,238 
1896 6,240 1946 13,389 
1897 3,784 1947 11 ,913 
1898 4,604 1948 11,737 
1899 4,708 1949 15,206 
1900 11 ,435 1950 12,352 
1901 10,503 1951 11 ,223 
1902 5,931 1952 9,975 
1903 11 ,355 1953 8,373 
1904 5,006 1954 11 ,572 
1905 6,829 1955 11 ,277 
1906 9,311 1956 9,586 
1907 7,003 1957 8,801 
1908 10,318 1958 7,300 
1909 7,448 1959 4,287 
1910 3,166 1960 5,958 
1911 4,088 1961 5,603 
1912 4,898 1962 6,729 
1913 9,773 1963 7,801 
1914 6,519 1964 10,844 
1915 8,209 1965 11 ,274 
1916 7,079 1966 11 ,000 
1917 7,578 1967 11 ,000 
1918 8,826 1968 11,000 
1919 10,427 1969 18,000 
1920 6,457 1970 15,000 
1921 6,602 1971 13,000 
1922 11 ,395 1972 14,000 
1923 6,430 1973 19,000 
1924 9,779 1974 15,000 
1925 8,512 1975 13,663 

Table 3. Projected biomass with F = 0, r = 0.2 for each year. 

Year r Pi_(l03MT) Ri (l03MT ) Y(l03MT) 

1976 .35- 270- 115- 0 

1977 .2 480 105 0 

1978 .2 690 150 0 

1979 .2 950 210 0 

1980 .2 1230 270 0 

*actual 
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Table 4. Projected biomass with F = 0.25, r ~ 0.2 for each year. 

Year r Pi- Ri Y 

1976 .35* 270* 115* 90 

1977 0.2 375 80 120 

1978 0.2 440 95 140 

1979 0.2 505 110 150 

1980 0.2 574 130 160 

*actual 

Table 5. Projected biomass with one large year-class and others 

average and F = 0.25. 

Year r Pi Ri Y 

1976 .035 270 115 90 

1977 .6 375 310 170 

1978 .1 360 40 100 

1979 .1 345 35 95 

1980 .1 325 35 90 

Table 6. Projected biomass under assumption F = 1.0, r = 0.2 for 

all years. 

Year r Pi Rj Y 

1976 .35 270 115 270 

1977 .2 180 40 160 

1978 .2 105 23 90 

1979 .2 60 14 50 

1980 .2 35 7 30 
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