International Commission for

.
Sarial No. 4050
(D.c.2)
the Northwest Atlantic Fisheries

ICNAF Ras,Doc. 76/XII/154

NINIH SFECTAL COMIBBIDN MEETING - DECEEMEER 1976
THE LIPE CYCLE OF THE SHRIMP (PANDALUS BOREALIS KR.) IN GREENLAND WATERS DISCUSSED IN REIATION TO THE POTENTIAL YIELD OF THE STOCKS
by
Svend Aage Horsted
Granlands Fiskeriundersogelaer Charlottenlund Danmark

INTRODUCTION

Sampling of shrimp in Greenland waters has been an important part of the research program of the Greenland Fisheries Investigations in all years since 1946. Analyses of the samples have lead to a fairly good knowledge of the general biology of the apecies in Greenland waters, especially regarding the life cycle including the sexual development, apawning and hatching (Horsted and Smidt, 1956). However, the analyses have normally not been connected closely with the recent discussion of the yield of the stocks. Some of the detailed analyses of samples may, however, be important background for the discussion of the potential yields, and such details are brought forward for discussion in the present paper.

MATERIAL AND METHODS

In the initial phase of the research on shrimp in Greenland waters the samples were normally sorted in several categories: juveniles, males, transitional stages (\underline{P}. borealis is a-protandric hermaphrodite) and females. Furthermore the females and the transitional stages were broken down in groups acoording to the development of the gonads and eggs: individuals without roe, those with head roe, berried (ovigerous) animals, and those where egge recently hatched or were lost (setae on the pleopods, Berkeley, 1930). The last two categories contain no transitional individuals, whereas transitionals may be found without roe or with head roe, but transitionals and females were not broken down in more detalls such as Rasmuseen (1953) did in his analyses of the Norwegian atocks.

After several years' analyses in the 1940-50ies the general biology seemed to be so well described that the detailed analysis of the samples was discontinued and recent work has concentrated more on measuring a great number of samplea and individuals whereas the detailed sorting in categories has been confined to three groups: individuals without roe, individuals with head roe, and berried individuals.

It may be regretted now that the more detailed break down of the samples has been discontinued. Anyway, for the purpose of the present paper it has been neceasary to use the older, more detalled samplea, and even these ought to have been analyaed in more details for thia paper.

One of the important group of animals to have been conaidered in the paper is that category of shrimps which can be called "berried and with head roe". Such a group was, however, never established in the analyses although it existed (Horsted and Smidt, l.c. page 76). Sometimes a footnote on the sample form indicates that berried or newly hatohed females also had head roe but generally head roe has been classified as suoh only when no eggs or setae occurred on the pleopods.

Furthermore, Horsted and Smidt (1.c.) In the earlier material classified head roe as such as soon as the green colour of the gonads was clearly visible through the carapace, whereas the various persons who sorted more recent samples used a classification where the green colour of the gonads should extent close to the posterior part of the carapace. Head roe would, therefore, occur later and relatively less abundant in more recent samples than in earlier samples. The material used by Horsted and Smidt (1.c.) was generally preserved in formalin before being analyzed whereas in recent years the material has been fresh frozen, and individuals in these samples are not very easily reckognized as developing head roe in an early stage, and many frozen and thawn individuals are not even usable for measuring the carapace.

Another difference between former and more recent material is found in the measurement of the carapace. Earlier material was measured to mm (below) from eye lobe to lateral, posterior edge of the carapace. More recent material has been measured to half-millimeter from eye lobe to dorsal, posterior edge of the carapace. Rasmussen (1.c.) also measured his material by the latter method, although to whole millimeters. Horsted and Smidt (I.c.)pages 73) gives a comparison between Rasmussen's and their method of measuring.

Time has not allowed the author to consider more than a small part of the material for the December 1976 meeting of the ICNAF Assessment Subcomittee. The analysea have, therefore, been confined to such inahore material which covers a well defined area regularly throughout the year, or which have been sampled through several years and to such offshore material which covers the more important months for thia analyses. (March to May).

RESULTS AND DISCUSSION

The Tunugdliarfik material.
The length of the berried (ovigerous) period varies between areas (Rasmussen, 1.c., Horsted and Smidt, l.c.) but in Greenland waters it extends generally from August to April-May, a relatively long period.

The best material to illustrate the annual cycle is from the Tunugdiarfik Fjord Between Narssaq and Harssarssuaq, southern Greenland. This stock has been steadily exploited since the early 1950 ies with annual catches at that time of 2-300 tons but rather less in the 1960 ies and recent years. The material was sampled in the $1950 i e s$ and 18 given in Table 1. The periods with the most frequent sampling are illustrated on Figs. 1 and 2. Only the transitionals and females are considered here. The most easy point to atart looking at the figures is probably in September-October when apawning has finished. At that time by far the major part (80% or more) of the considered group of shrimps consists of berried females, but also of individuals without roe, amongst these some with setae on the pleopods indicating that they spawned without succeeding to get berried. This corresponds with observations by Rasmussen (i.c.) in the Norwegian
aterial.
Throughout the winter period the level of berried females fluctuates somewhat but the general trend is a more or less pronounced decrease. This decline is due partly to some individuals loosing their eggs but especially to recruitment by transitionals to the group oonsidered. The highest frequency of transitionsls without head roe is normally found from November/December through the first 2 months of the following year (see upper part of Figg. 1 and 2). Head roe in the transitionals (and females) is not visible until late february but from March and through to spaming so to say all transitionals show this sign of maturation and their number increases considerably in March-April. Their relative number decreases in May-June, partly because they themselves gradually change the oharacters so much that they get classified as females (with head roe), but mainly because the egga of the berried females hatch in April-May and after a short setae-on-the-pleopods period these animals get classified as females with head roe. Immediately before spawning atarts in late July the number of head roe individuals reaches its peak, normally more than 80% of the group considered. Some females which recently hatched their eggs may, however, not develop roe for the same year's apawning and continue after hatching as females without roe. This category does, however, not seem to be a significant part of the stock in the Tunugdiarfik, but it will be combined in July-August with that category of females where spawning was unsuccessful so that in the autumn the combined non-roe group may reach a level about $20-30 \%$. In February-March next year most, if not all, of these individuals will develop head roe and will be distinguished from the transitional head-roe individuals only by the character of the endopodite of the first pair of pleopode (Berkeley, I.c., Resmussen, l.c.).

Length Prequency diagrams of the samples show that the considered group of animale will normally have one common mode and that they will show up as only one or two age groups by the Petersen method, sometimes with a tendency to a small group of larger (older) animals (Figs. 5 and 6 show typical length frequency diagrams). However, the detailed material does allow one to atate that there are at least two diatinct groups distributed round the main mode of the group considered. Although they may not actually be two distinct year classes or age groups in the strict sence they could for population asseasments be regarded as such. The two groups are the berried females and that part of the March-April head roe individuals which are transitional and which could be regarded as that year's recruits to the female component of the stock. They could probably consist of slow growing individuals of one year class and fast growing individuals of the following year class but could for assessment purposes be regarded as a cohort.

The material as illustrated may also lead one to judge that'even if transitionals had not been separated in the head roe group there might still be a possibility to separate recruits from older animals. That part of the headroe group which consists of older animala does namely occur in September-0ctober as the very major part of the without-roe group, and it might, therefore, be posible to judge its strength in the following year's March-April combined head-roe group.

It is interesting to note that the relative strength of the recruiting cohort is close to the same strength as the combined groups of older age groups
to which it will recruit. This could lead to aome ideas about mortality. However, in the inshore areas of West Greenland it has been clearly demonstrated that the length frequency of the population changes with depth (see Figs. 3 and 4). It is, therefore, likely that a good part of the female group emigrate (actively or by currents) from the ground to deeper ground close to the Tunugdilarfik. In fact, at a deeper ground close to Harsasq one finds a population with a much greater inflow of larger and likely older animals than in the Tunugdiarfik (Fig. 4). It is thus likely that the relative atrength of the recruita in the Tunugdiaarik material is overestimated in relation to the more widely distributed population in the area.

It should be noted that ecdyses cannot occur (without harm to the eggs) in the berried group of animals. There 1s, therefore, no growth in terms of ohanges in carapace length in the period from early August to late April. In the period April-July the major part of the previously berried females will rapiday develop new eggs. It does, therefore, seem very likely that from the time of the first spawning the growth rate is so alow that one can hardly expect to find separate age groups by the Petersen method inside a normal distribution which covers $5-6 \mathrm{~mm}$. Only those relatively few females which take "a. year of rest" seem to have the possibility of forming another mode in the length frequency diagrams, and such modes do oocur as shown in Figs. 5 and 6. One should, however, be very careful to judge anything about mortality from the ratio between modes in the female part of the stock. Several cohorts could be accumulated around the major mode, and the various length groups will be unevenly distributed on the ground according to depth.

Furthermore, in the Punugdiarfik it has been demonstrated that inflow of warm water in the deeper layers in winter time causes greater abundance of shrimps, especially of the larger ahrimps, probablyfarried into the fjord from outer parts of the fjord and from adjacent offehore areas (Horsted and Smidt, l.c.). Figs. 5 and 6 show the difference in length frequencies between the summer-autumn (Fig. 5) and the winter (Fig. 6) when warm bottom water dominates and catch rate is at its highest annual level. Such migration of specific length groups will also very much limit the possibilities of using length frequency figures to estimate mortalities.

The Diako Bay material.

The material from the Disko Bay constats of a great number of samples through many years and covering various grounds in the bay. Detailed sorting has, however, been made only in the 1940-1950ies and for some few samples in the 1970ies, whereas the many samples from most reaent years have been broken down in three categories mentioned on page 2. The material is generally limited to the summer months and does not allow for detailed analyses of the annual cycie, especially not for analyses of the important March-April period, when the transitionals are supposed to achieve their maximum.

Only the most recent material is computerized, and there has not been time enough to compile and tabulate the total material for the December 1976 meeting of ICNAF. Two grounds in the Disko Bay have been chosen for the analyaes, viz. the ground close to the southeastern shoreline of the Disko Island (the Godhavn ground), and the ground close to Christianshb at the southeastern part of the Disko Bay. The material from these two areas 18 shown in Tables 2 and 3.

Since no continuous annual series of detailed samples exist from the Disko Bay an illuatration like the one fron Tunugdiarfik (Figs. 1-2) cannot be given. Instead the material has been illustrated by plotting each of the categories, irrespective of year, against the proper date. This is illustrated in Pigs. 7 and 8.

Figs. 7 and 8 both indicate that the apaming period is about the same as in Tunugdiarfik, starting in July and finished at the end of August. But evidently some variation exist between years. The samplea from 1948 seem to indicate a later spawning that year than normally with many head-roe animals still occurring in late August or even in the beginning of September.

Compared to the Funugdliarfik material the Godharn and Christianshab material does not achieve the ame high level of berried animala, but a relatively greater part of the females seem to pass the winter months without roe. Thus the potential productivity per stock unit may be relatively low in the Diako Bay although also likely to vary greatly between years. For example, in 1950 and 1952 the samples show a relatively great number of head roe transitionals which contributed to a relatively high level of berried females in the same year. Thus year-class fluctuations seem to be significant. .

The most remarkable feature in Figs. 7 and 8 is probably found in the group of berried females. It will be seen that the plots for the 1940-50ies (black dots and full line) generally lies somewhat higher than those for 1963-64. and 1974-76 (open circles and broken lines). This could possibly reflect some influence from the fishery which increased considerably in the period (Fig. 3 in Rea.Doc. 76/VI/16) and which may exploit the larger animala more heavily than the amaller animals, both due to actively seeking those grounds where larger animals dominate (as long as catehes here are good) and due to some mesh selection. Looking at the non-roe group it could also occur that agreater part loose their eggs in recent years than formerly. However, the length frequency diagrams suggeat that the increase in the non-roe group is mainly due to recruitment of smaller individuals to the considered group or to gradual decrease of the larger animals. The groups will, of course, balance to the 100% and at present no firm data are available to clearly demonatrate absolute changes in the abundance of the various leagth and sex groups. Further analyses, including details on possible loss of roe at spawning and of the tendency to "take a year of rest" after a year of spawning will need to be made before more firm conclusions can be drawn.

The material from the Godthel Deep and the Sukkertoppen Deep.

The Godtháb Deep located ast of the Fylla Bank (Div. iD) and the Sukkertoppen Deep between the Fylla Bank and the Banans Bank (Div. 1C) are two offshore grounds where standard stations for trawling have been established in the annual reaearch program of the Greenland fisheries research institute.

The total material of shrimp samples from these two grounds are presented in Tables 4 and 5 and illustrated in Figs. 9 and 10.

AB aadd earlier in the paper the head-roe group in the material from these grounds cannot be compared to the Tunugdilarik and Disko Bay material because of the difference in the criteria for head roe (see page 2 , middle of the page). One feature does, hewever, ocour very clearly, namely a somewhat later spawning than in the previously mentioned inshore areas. Thus berried females have not cocurred in the samples until mid Auguat, whereas in the inshore samples berried

Pemales start to occur already in July. Hatching seams to take place at the same time as in Tunugdliarfik, probably a little earlier.

A great percentage, more than 80%, of the spawning females seems to get berried, but the percentage of berried animala declinea rapidly in the first months of the year, most probably due to a recruitment by transitionals to the length groups considered. However, aince transitionals were not sorted out and since the first stages of head roe were not classified as head roe it is very difficult to interprete the fluctuations in the non-roe group. Some comments are given as footnotes to Tables 4 and 5. Future samples will have to be analyzed in more details before more firm conclusions can be drawn, but the present material auggests that spawning in these grounds was rather successful, at least in 1973 and 1975, but probably less successful in 1974, when the relative abundance of berried females was low in November on both grounds, and also in the following January 1975 on the Godthaib Deep (the Sukiertoppen Deep was not sampled until April that year). The very low figure for bexried females in January 1976 in the Sukkertoppen Deep is a mystery but may be caused either by a high new recruitment to the length group considered or a real decline in the number of berried females, possibly due to migration.

The amples do not at present allow any judgement about the degree to which berried females will develop roe for the next season although most length frequency diagrams will suggest that also for these offshore areas an accumulation of age groups could take place in the length groupa $22-26 \mathrm{~mm}$ dorsal carapace length, corresponding to about $26-30 \mathrm{~mm}$ lateral length.

GENERAL DISCUSSIOD AND CONCLUSIONS

Although the length of the berried period varies somewhat between areas in Greenland it is generally of a considerable length compared to some of the other areas outside Greenland where the species occurs In some areas, at least, the major part of berried females will develop roe for a new spawning to take place about 4 months after the eggs hatched. It is suggested that this will mean a very small annual increment in carapace length for such animals, and lead to an acoumulation of some age groups around the last high mode in the length frequenoy diagrams. In fact, compared to frequency diagrams of most fish catches there is a very high mode amongst the oldest animals where one would expect a decrease in modes if each mode represented an age group and if recruitment was rather constant. Difference between length groups in their occurrence at various depths and the selectivity of the gear may, of course, influence the length frequency diagrams considerably, but the said character of moat diagrams is noteworthy. Anyway, detailed analyses of the distribution round the modes, especially the mode in the $22-26 \mathrm{~mm}$ length group (carapace dorsally measured) seems to require a close study.

The commercial fishery exploits mainly that group of animals considered in this paper, vfz. the transitionals and females, but also the larger males (Berenboim et al., 1976. Fuertea and Lopez Veiga, 1976). The transitionals could probably be used as a measure of each year's recruitment to this group of animala. Anyway, it should be borne in mind that the long-term yield which can be taken from the aaid group of animals is no more than the mean annual recruitment to the group, and a part of the recruitment will have to be saved for a spawning and a hatching, the latter not taking place until about a year
after the tranaitionals recruited to the said length group and to the fishery. The fact that Pandalus borealis is a protandric hermaphrodite makea the question about stock/recruitment relationship and exploitation rate very important since no spawning by females occur before they enter the exploited phase of their life, and the females are exposed to one full year's fishing mortality, at least, before they make their first contribution to the production of larvae.

REFERENCES:

Berenboim, B.I. et al., 1976. State of the stocks of Deepwater Shrimps in the Weat Greenland Area. ICNAF Res.Doc. 76/VI/113.
Berkeley, A.A., 1930. The Post-Embryonic Development of the Common Pandalids of British Columbia. Contrib.Can. Biology and Fisheries, M.S. Voi.VI, No. 6.
Fuertes, J.R. and E.C. Lopez Veiga, 1976. Catcil composition of the Spanish prawn (Pandalus borealis Kr.) Pishery, and possible stock estimates. ICNAF Res.Doc. 76/vI/50.
Horsted, Sv.Aa: and R.Smidt, 1956. The Deep Sea Prawn (Pandalus borealis Kr.) in Greanland Waters. Medd.Danm.Fiskeri- og Havunders., N.S. I, 11.
Rasmussen, B., 1953. On the Geographical Variation in Growth and Sexual Development of the Deep Sea Prawn (Pandalus borealia Kr.). Reports on Norwagian Fishery and Marine Invest., Vol. X, No. 3.

Res. Doc. 76/XII/M54

Appendix 1.

```
REVISED TABLES
    In Tables 2 and 3 the author initially used a fixed point of carapace
length to assume that all individusls without roe but larger than that size
were transitionals or females. For Tables 4 and 5 the length frequency of the
Individual samples was taken into account when separating the groups. This
has now also been done for the Disko Bay material for the years 1974-76, and
the revised figures are set out in Tables 2 and 3 revised. For the Christianshafb
ground further samples are added. The revisions are in most cases rather small.
The revised figures are used in Figs. 7 and 8.
    It will be seen that in most cases the knife-edge distinction point between
the males and the transitionals plus females is at or very close to those used
in the first instance for the tables.
```

TABLE 1. Samples of Pandalua horealia from Tunugdiarfik, near Karbsaq, southern Greenland. indicates transitional stages, BR berried females, $H R$ head roc visible, HR no roe, K lost or newly hatehed roe. Percentagea are percentages of total $+\%$.

1.		Year y/mon	nth		$\begin{array}{r} 1947 \\ 7.7 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 2.3 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 16.3 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 29.4 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 4.5 \\ \hline \end{array}$	$\begin{aligned} & 1950 \\ & 10.5 \\ & \hline \end{aligned}$	$\begin{array}{r} 1951 \\ 6.9 \\ \hline \end{array}$	$\begin{array}{r} 1952 \\ 23.9 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 8.1 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 11.2 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 9.3 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 7.4 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 21.5 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 11.6 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ -22.6 \\ \hline \end{array}$
2.		tal	sample ((nos.)	160	216	121	213	185	213	942	294	209	378	449	475	562	593	412
3.	\%	total	1 (nos.)		33	5	14	3	5	4	0	0	24	28	63	59	32	36	16
4.	9	tote	1 (nos.)		40	38	80	14	6	7	51	34	14	40	58	82	43	41	102
5.	\ddagger	NR	\%		-	9.3	7.4	-	-	-	-	-	63.2	41.2	-	-		-	-
6.	${ }_{7}$	HR	\%		45.2	2.3	7.4	17.6	45.6	36.4	-	-	-	-	52.1	41.8	42.7	46.8	13.6
7.	9	NR	\%		2.7	16.3	8.5	-	-	-	37.3	44.1	18.4	14.7	-	-	4.0	28.6	3.4
8.	\%	HR	\%		52.1	11.6	53.2	58.8	36.4	45.6	27.5	\cdots	-	-	12.4	14.2	16.0	24.7	78.8
9.	7	BR	\%		-	58.1	23.4	17.6	18.2	18.2	35.3	47.1	18.4	44.1	34.7	42.6	4.0	-	-
10.	9	KR	\%		-	2.3	-	5.9	-	-	-	8.8	-	-	1.0	1.4	33.3	-	4.2

1.		Yebx ay/mo	nth	$\begin{array}{r} 1953 \\ 16.7 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 9.8 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 22.8 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 7.9 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 23.9 \\ \hline \end{array}$	$\begin{aligned} & 1953 \\ & 10.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1953 \\ & 24.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1953 \\ & 10.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 1953 \\ & 24.11 \end{aligned}$	$\begin{gathered} 1953 \\ 11.12 \\ \hline \end{gathered}$	$\begin{aligned} & 1953 \\ & 28.12 \\ & \hline \end{aligned}$	$\begin{array}{r} 1954 \\ 13.1 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 25.1 \\ \hline \end{array}$	$\begin{aligned} & 1954 \\ & 12.2 \end{aligned}$	$\begin{array}{r} 1954 \\ 1.3 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 18.3 \\ \hline \end{array}$
2.		tal	sample	243	225	446	541	374	438	539	476	463	409	379	343	342	420	371	502
3.	+	total	1 (nos.)	32	0	2	4	1	2	0	13	8	21	8	13	10	23	30	39
4.	\%	total	1 (nos.)	56	22	57	B7	72	86	60	71	77	71	93	107	104	87	99	25
5.	\%	NR	各	-	-	1.7	4.4	1.4	2.3	-	15.5	9.4	22.8	7.9	10.8	8.8	20.9	23.3	
6.	\%	HR	\%	36.4	-	1.7	-	-	-	-	-	-	-	-		-	-	-	60.9
7.	9	NR	\%	4.5	45.5	20.3	20.9	26.0	29.5	18.3	45.2	28.2	39.1	20.8	12.5	10.5	3.6	6.5	1.6
8.	9	HR	\%	53.4	13.6	13.6	2.2	2.7	-	-	-	-	-	-		1.0	1.0	2.3	7.8
9.	9	BR	\%	5.7	40.9	62.7	91.4	69.9	68.2	81.7	39.3	62.4	37.0	71.3	75.0	76.3	73.6	64.3	29.7
10.	¢	KR	\%	-	-	-	1.1	-	-	-	-	-	1.1	-	1.7	0.4	-	1.6	-

1. Year $\begin{gathered}\text { Day/month } \\ \text { getal }\end{gathered}$	$\begin{array}{r} 1954 \\ 6.4 \\ \hline \end{array}$	$\begin{aligned} & 1954 \\ & 20.4 \end{aligned}$	$\begin{array}{r} 1954 \\ -7.5 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 21.5 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ -8.6 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 21.6 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 5.7 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 23.8 \\ \hline \end{array}$	$\begin{array}{r} 1955 \\ 22.8 \\ \hline \end{array}$	$\begin{array}{r} 1955 \\ 7.9 \\ \hline \end{array}$	$\begin{array}{r} 1955 \\ 23.9 \\ \hline \end{array}$	$\begin{gathered} 1955 \\ 24.10 \\ \hline \end{gathered}$	$\begin{aligned} & 1955 \\ & 14.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 1955 \\ & 14.12 \end{aligned}$	$\begin{array}{r} 1956 \\ 10.1 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 21.2 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 23.3 \\ \hline \end{array}$
2. Total sample(nos,)	512	524	543	562	572	606	513	766	443	462	291	520	409	595	326	307	688
3. total (nos.)	43	20	15	6	12	a	14	0	1	0	0	0	0	6	17	2	17
4. 9 total (nos.)	83	51	46	65	59	49	93	13	49	42	44	50	87	17	33	5	21
5. \% NR \%	-	5.6	3.3	-	-	1.8	-	-	-	-	-	-	-	26.1	34.0	28.6	23.7
6. \% HR \%	34.7	22.5	21.3	8.5	16.9	12.3	13.1	-	2.0	-	-	-	-	-		-	21.0
7. $\%$ NR \%	2.3	4.2	3.3	4.2	1.4	14.0	3.7	15.4	2.0	-	-	4.0	1.1	8.7	4.0	-	7.9
8. \& HR \%	11.9	2.8	19.7	69.0	78.9	70.2	81.3	-	74.0	31.0	-	-	-	-		-	-
9. $\% \mathrm{BR}$ \%	49.2	64.8	31.1	2.8	-	-	1.9	84.6	22.0	69.0	97.7	96.0	98.9	52.2	60.0	71.4	44.7
10. \% KR \%	2.4	-	21.3	15.5	2.8	1.8	-	-	-	-	2.2	-	-	8.7	2.0	-	2.6

$\text { 1. } \begin{gathered} \text { Year } \\ \text { Day/month } \end{gathered}$	$\begin{array}{r} 1956 \\ 10.4 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 7.5 \\ \hline \end{array}$	$\begin{aligned} & 1956 \\ & 14.6 \end{aligned}$	$\begin{array}{r} 1956 \\ 30.6 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 30.7 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 31.8 \\ \hline \end{array}$	$\begin{array}{r} 1956 \\ 29.9 \\ \hline \end{array}$	$\begin{aligned} & 1956 \\ & 20.10 \end{aligned}$	$\begin{array}{r} 1957 \\ 26.1 \end{array}$	$\begin{array}{r} 1957 \\ 28.2 \end{array}$	$\begin{aligned} & 1957 \\ & 18.3 \end{aligned}$	$\begin{aligned} & 1957 . \\ & 15.11 \end{aligned}$	$\begin{array}{r} 1958 \\ 2.1 \end{array}$	$\begin{array}{r} 1958 \\ 3.3 \end{array}$	$\begin{array}{r} 1958 \\ 19.7 \\ \hline \end{array}$
2. Total ample(nos.)	378	484	338	465	340	478	459	233	433	251	179	314	274	397	517
3. \%total (nos.)	7	4	4	1	0	1	0	0	18	9	9	8	10	21	6
4. F total (nos.)	11	3	8	32	39	59	55	25	39	8	9	19	66	15	26
5. NR \%	-	-	-	-	-	-	-	-	31.6	52.9	50.0	29.6	13.2	58.3	-
6. HR \%	38.9	57.1	33.3	3.0	-	1.7	-	-	-	-	-	-		-	18.8
7. \% NR \%	-	-	41.7	12.1	12.8	11.7	16.4	16.0	14.0	-	5.6	-	1.3	8.3	-
8. \% HR \%	27.8	-	-	57.6	76.9	40.0	1.8	-	-	-	11.1	-		19.4	81.3
9. 9 BR \%	33.3	42.9	-	-	10.3	46.7	81.8	84.0	54.4	35.2	33.3	63.0	81.6	13.9	_
10. $\ddagger \mathrm{KR}$ \%	-	-	25.0	27.3	-	-	-	-	-	11.8	-	7.4	3.9	-	-

TABLE 2．Samples of Pandalus borealis Prom Disko Bay，traming ground along Disko between Godhavn and Skansen．争 indicates
 are percentages of total $\%+\%$ ．

1.	Year Day／month	$\begin{array}{r} 1948 \\ 2.9 \\ \hline \end{array}$	$\begin{aligned} & 1949 \\ & 12.7 \end{aligned}$	$\begin{array}{r} 1949 \\ 21.8 \end{array}$	$\begin{array}{r} 1950 \\ 6.6 \end{array}$	$\begin{array}{r} 1950 \\ 18.7 \\ \hline \end{array}$	$\begin{array}{r} 1952 \\ 1.7 \\ \hline \end{array}$	$\begin{aligned} & 1952 \\ & 28.7 \end{aligned}$	$\begin{aligned} & 1953 \\ & 23.7 \end{aligned}$	$\begin{array}{r} 1953 \\ 23.7 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 18.8 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & 1963 \\ & 12.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 1964 \\ 27.7 \\ \hline \end{array}$	$\begin{array}{r} 1971 \\ 24.7 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 4.8 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 31.8 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 20.9 \\ \hline \end{array}$
2.	Total sample（nos．）	172	320	421	341	361	204	277	273	516	393	460	216	341	205			232
3.	\％total（nos．）	10	2	1	16	68	39	15	6	8	7	22	6	0	）	）		）
4.	\％total（nos．）	84.	27	46	13	76	27	146	24	67	142	74	59 $3)$	23	59 1）	101 2 ）	129 1）	104 ${ }^{1}$ ）
5.	$\%^{\text {HR \％\％}}$	－	－	－	－	－	－	0.6	－	－	4.7				1）	2）		
6.	\％HR \％	10.6	6.9	2.1	55.2	47.2	59.1	8.7	20.2	10.7	－	22.9	9.2					
7.	O FR \％$\%$	－	44.8	44.7	－	17.4	15.2	36.6	16.7	28.0	38.3	2.1	63.1	39.1	54.2	54.5	65.9	77.9
8.	\％HR \％	55.3	48.3	2.1	31.0	20.8	21.2	4.3	16.7	22.6	2.7	25.0	16.9	43.5	39.0	24.8	13.2	1.9
9.	\％BR ：	31.9	－	51.1		14.6	4.5	45.3	46.7	38.7	54.4	40.6	10.8	17.4	6.8	20.8	20.9	20.2
10.	¢ KR \％	2.1	－	－	13.8	－	－	4.3	－	－	－	9.4	－	－	1）			1）

1.	$\begin{gathered} \text { Year } \\ \text { Day/month } \end{gathered}$	$\begin{array}{r} 1974 \\ 23.9 \\ \hline \end{array}$	$\begin{aligned} & 1974 \\ & 30.9 \end{aligned}$	$\begin{aligned} & 1974 \\ & 18.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1975 \\ 29.4 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 29.4 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 7.8 \\ \hline \end{array}$	$\begin{aligned} & 1975 \\ & 20.9 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975 \\ & 15,10 \\ & \hline \end{aligned}$	$\begin{gathered} 1976 \\ 13.5 \\ \hline \end{gathered}$	$\begin{array}{r} 1976 \\ +6.7 \\ \hline \end{array}$
2.	```Total sample (nos.) # total (nos.)```	$\begin{gathered} 503 \\ 1) \end{gathered}$	548	$\begin{gathered} 476 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 750 \\ 1) \end{gathered}$	$\begin{gathered} 673 \\ 1) \end{gathered}$	$\begin{gathered} 749 \\ 1) \end{gathered}$	$\begin{gathered} 1379 \\ 1 \text {) } \end{gathered}$	$\begin{gathered} 908 \\ \text { 1) } \end{gathered}$	$\begin{array}{r} 1457 \\ 1 \end{array}$	$\begin{gathered} 797 \\ \text { 1) } \end{gathered}$
4.	$\begin{aligned} & \& \text { total (nos.) } \\ & \text { \& NR \% } \end{aligned}$	126 ${ }^{\text {1）}}$	175 ${ }^{\text {1）}}$	$\begin{gathered} 129 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 185 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 221 \\ 1) \end{gathered}$	453 1）	$\begin{gathered} 346 \\ \text { 1) } \end{gathered}$	354 1）	$\begin{gathered} 228 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 417 \\ \text { 1) } \end{gathered}$
6.	あ HR 右	1）	1）	1）	1）	1）	1）	1）	1）		
7.	\％NR \％	81.7	84.6	71.3	23.8	46.6	39.7	71.7	47.2	42.1	1.2
8.	\％HR \％	－	－	－	34.1	26.7	26.5	－		53.1	48.7
	\％BR \％	18．3 ${ }_{1}$	$\left.\begin{array}{c}15.4 \\ 1\end{array}\right)$	28.7	$\begin{gathered} 42.2 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 26.7 \\ 1 \text {) } \end{gathered}$	$\left.\begin{array}{c} 33.8 \\ 1 \end{array}\right)$	$\left.\begin{array}{c} 28.3 \\ 1 \end{array}\right)$	$\begin{gathered} 52.8 \\ 1 \end{gathered}$	4．9 ${ }_{1}$ ）	10．1
	\％KR \％										

1）Sample broken down in 3 cetegories only：i）no roe 1i）head roe 111）berried．All individuals of categories 11）and iii）and individuals of category 1）above $26 \mathrm{~mm}($ lateral $)$ or $22 \mathrm{~mm}($ dorsal） carapace length asoumed to be f ．
2）Tranaitionals grouped with q ．
3）Transitionalg not broken down but assumed to be with head roe．
4）Length frequency diagram indicatea that most of these could be δ ．

TABLE 2，revised．Samples from the Godhava ground，1974－76．Samples where revigions occur are marked by x ）．The size dorsally（d）or laterally（1）measured．

$\begin{aligned} & \text { Year } \\ & \text { Day/month } \end{aligned}$	$\begin{array}{r} 1974 \\ 4.8 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 31.8 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ -20.9 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 23.9 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 30.9 \\ \hline \end{array}$	$\begin{aligned} & 1974 \\ & 18.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1975 \\ 29.4 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 29.4 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 7.8 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 20.9 \\ \hline \end{array}$	$\begin{aligned} & 1975 \\ & 15.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1976 \\ 13.5 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 16.7 \\ \hline \end{array}$
Total nor．	347	249	232	503	548	476	673	750	749	1379	908	1457	797
$\ddagger+9$ nos．	131	130	104	93	175	129	271	231	453	293	354	228	417
$\%+9$ NR $\%$	54.5	66.2	77.9	75.3	84.6	71.3	58.3	39.0	39.7	66.6	47.2	42.1	41.2
$\%^{\circ}+9$ HR \％	24.8	13.1	1.9	－	－	－	19.9	27.3	26.5	－－	－	53.1	48.7
\％BR \％	20.8	20.8	20.2	24.7	15.4	28.7	21.8	33.8	33.8	33.4	52.8	4.9	10.1
mm carapace	261	261	261	271	22 d	22 d	21 d	21 d	22 d	23 d	22 d	22 d	22 d
Reference Pootnotes	Sandgr	$\begin{aligned} & 4971 \\ & x) \end{aligned}$	4986	Alut x）	Kinga- puk	ans H.	Elisa－ beth x）1）	Anda P ． x）1）	5101	5129 x）	5141	5195 2）	5262

1）The NR group is likely to contain reoruiting transitionals．
${ }^{2)}$ The NR group may contain some large males．

TABLE 3. Samples of Pandalua borealis from Diako Bay, ground off Christianshab. findicates transitional stages, BR berried females, HA head roe visible, NR no roe, KR loat or newly hatched roe. Percentagea are percentages of total $+\rho$.

1. $\begin{aligned} & \text { Year } \\ & \text { Day/month }\end{aligned}$	$\begin{array}{r} 1947 \\ 28.9 \end{array}$	$\begin{array}{r} 1948 \\ 29.6 \end{array}$	$\begin{array}{r} 1948 \\ 14.7 \\ \hline \end{array}$	$\begin{aligned} & 1948 \\ & 19.8 \end{aligned}$	$\begin{array}{r} 1948 \\ 27.8 \\ \hline \end{array}$	$\begin{array}{r} 1948 \\ 28.8 \\ \hline \end{array}$	$\begin{array}{r} 1948 \\ 31.8 \\ \hline \end{array}$	$\begin{array}{r} 1949 \\ 8.7 \\ \hline \end{array}$	$\begin{array}{r} 1949 \\ 27.8 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 22.7 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 22.7 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 1.8 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ 15.8 \\ \hline \end{array}$	$\begin{array}{r} 1950 \\ -1.9 \\ \hline \end{array}$	$\begin{array}{r} 1952 \\ 26.6 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 3.7 \\ \hline \end{array}$	$\begin{array}{r} 1953 \\ 29.7 \\ \hline \end{array}$
2. Total asmple (nos.)	324	546	353	390	760	357	571	323	810	335	357	114	168	161	162	212	544
3. \%otal (noe.)	0	44	18	24	11	11	3	3	13	32	18	3	1	1	32	11	23
4. F total (nos.)	26	49	214	91	57	87	38	41	165	69	62	25	26	32	42	94	61
5. \% NR \%	-	2)	2)	-	-	-	4.9	6.8	4.5	3.0	1.3	3.6	3.7	3.0	5.4	5.7	
6. ${ }^{\text {\% }}$ HR \%	-	2)	2)	20.9	16.2	11.1	2.4	-	2.8	28.7	21.3	7.1	-		37.8	4.8	
7. ¢ NR \%	26.9	2)	2)	9.6	8.8	8.1	9.8	25.0	50.6	10.9	16.3	21.4	25.9	12.1	21.6	53.3	31.0
ค. \% HR \%	-	2)	2)	60.0	25.0	43.4	24.4	68.2	3.4	27.7	27.5	10.7	14.8	6.1	24.3	16.2	9.5
9. ¢ BR \%	73.1	2)	2)	9.6	47.1	28.3	58.5	-	38.8	28.7	28.8	57.1	55.6	72.7	10.8	18.1	32.1
10. $)^{\text {KR \% }}$	-	2)	2)	-	-	8.1	-	-	-	1.0	5.0	-	3.7	6.1	-	1.9	-

1. Day/month	$\begin{array}{r} 1953 \\ 31.7 \end{array}$	$\begin{array}{r} 1953 \\ 10.9 \end{array}$	$\begin{aligned} & 1953 \\ & 22.9 \end{aligned}$	$\begin{array}{r} 1954 \\ 3.6 \\ \hline \end{array}$	$\begin{array}{r} 1954 \\ 8.8 \end{array}$	$\begin{array}{r} 1974 \\ 1.8 \\ \hline \end{array}$	$\begin{aligned} & 1974 \\ & 12.8 \end{aligned}$	$\begin{aligned} & 1974 \\ & 24.10 \end{aligned}$	$\begin{aligned} & 1974 \\ & 24.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975 \\ & 22.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1976 \\ 25.8 \\ \hline \end{array}$
2. Total ample (nos.)	180	207	187	114	252	501 $1)$	$\begin{gathered} 535 \\ \text { 1) } \end{gathered}$	$\begin{gathered} 591 \\ 1) \end{gathered}$	$\begin{gathered} 546 \\ 1) \end{gathered}$	$\begin{array}{r} 1397 \\ 1) \end{array}$	847 1)
3. ©̧ total (nos.)	3	7	4	25	3						
4. ¢ totsl \%	59	81	42	55	64	138	132 ${ }^{1}$)	141	$\begin{array}{r} 164 \\ 1) \end{array}$	$\begin{gathered} 194 \\ \text { 1) } \end{gathered}$	268
5. \%R \%	1.6	4.5	8.7	-	-						
6. \% HR \%	3.2	3.4	-	31.3	4.5)					
7. $\frac{8}{}$ NR \%	25.8	50.0	41.3	52.5	34.3	49.3	57.8	58.9	59.8	44.8	57.1
8. 9 HR \%	17.7	13.6	-	16.3	29.9	29.0	14.4	-	-	-	0.7
9. $\%$ BR \%	50.0	28.4	50.0	-	31.3	21.7	28.0	41.1	40.2	55.2	42.2
10. 9 KR \%	1.6	-	-	-	-))	1)	1)	1)	1)

> 1) Sample broken down in 3 categories only: i)no roe 11) head roe 11i)berried. All individuals of ostegories ii) and ii1) and individuals of astegory i) above 26 mm (lateral) or $22 \mathrm{~mm}($ dorsal) carapace length assumed to be 8 .
> 2) No detailed break down of transitionals and Pemales

TABLE 3, revised. Samples from the Christiansháb ground, 1974-76. Samples where reviaions occur are marked by x). The size above which all HR individuals are considered transitionals or females is given as carapace length dorsally (d) or laterally (1) measured.

$\begin{gathered} \text { Year } \\ \text { Day/month } \\ \hline \end{gathered}$	$\begin{array}{r} 1974 \\ 1.8 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 12,8 \\ \hline \end{array}$	$\begin{aligned} & 1974 \\ & 22.9 \end{aligned}$	$\begin{aligned} & 1974 \\ & 24.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1974 \\ & 24.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1975 \\ 23.7 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 17.9 \\ \hline \end{array}$	$\begin{aligned} & 1975 \\ & 22.10 \\ & \hline \end{aligned}$	$\begin{array}{r} 1975 \\ 23.10 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 19.5 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 25.8 \\ \hline \end{array}$
Total nos.	501	535	246	546	591	817	1075	1397	976	889	847
$\%$ + $\%$ nos.	138	132	75	164	122	212	216	180	290	313	251
$\%+9 \mathrm{NB} \%$	49.3	57.8	64.0	59.8	52.5	40.6	54.6	40.6	40.7	7.6	54.2
\% $+9 \mathrm{HR} \%$	29.0	14.4	-	-	-	44.8	-	-	-	90.4	0.8
\% + $\%$ BR	21.7	28.0	36.0	40.2	47.5	14.6	45.4	59.4	59.3	1.9	45.0
mm corapace	261		261	261	271	22 d	23 d	23 d	23 d	22 d	22.5 d
Heference	Kuluk	Beathe	4988	Hans Ole	Hand Chr.	5081	5122	Rasmus A.	5151	5201	Kuiuk
Footnotes					x)	1)	1)	x)	1)	1)	x)

1) These amples are not included in the original Table 3.

TABLE 4. Samples of Pandalug borealis from the Goathab Deop. Div. 1D. In this table the length frequency diagrama has bean to judge the likely number of individuala without roe which may belong to the tranaitionals or females, and the size above which animals are regarded as belonging to this category is given in the table. Percentages are percentage of total transitionals ((\%) plus females (\%). AR= no roe. HR= head roe. BR= oerried females, da dorsal measure, L* lateral measure of carapace

1.	Le lateral measurt of Year 1970 Day/month 5.6	$\begin{aligned} & \text { caray } \\ & 1970 \\ & 24.7 \end{aligned}$	1971 17.1	$\begin{aligned} & 1971 \\ & 13.5 \end{aligned}$	$\begin{aligned} & 1971 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 1971 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 1972 \\ & 26.5 \end{aligned}$	$\begin{aligned} & 1972 \\ & 13.7 \end{aligned}$	$\begin{array}{r} 1973 \\ 6.2 \end{array}$	$\begin{aligned} & 1973 \\ & 17.4 \end{aligned}$	$\begin{aligned} & 1973 \\ & 22.6 \end{aligned}$	$\begin{aligned} & 1973 \\ & 23.10 \end{aligned}$	$\begin{array}{r} 1974 \\ 8.1 \end{array}$	$\begin{aligned} & 1974 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 1974 \\ & 11.6 \end{aligned}$
2.	Total sample (nos.) 403	250	160	209	353	317	225	390	129	147	164	228	170	177	275
3.	Total $\%+9$ (nos.) 110	53	130	200	137	101	136	201	92	95	116	92	90	63	99
4.	$\%+9 \mathrm{NR} \%$ \% 68.2	35.8	10.0	92.0	44.5	42.6	34.6	46.3	41.3	26.3	13.8	31.5	16.7	27.0	19.2
5.	\% + \% HR \% 31.8	64.2	-	-	51.8	53.5	65.4	53.7	-	6.3	86.2	-	-		90.9
6.	\% BR \%	-	90.0	8.0	3.6	4.0	-	-	58.7	67.4	-	68.5	83.3	73.0	
7.	Size above which NR-individuals are considered of or 9 (mm)	24I	241	25L	25L	251	25L	251	251	262	26L	26L	27 L	27 L	265
8.	Reference no. and footnotes. 4376	4422	4512	$\begin{array}{r} 4530 \\ 42 \\ \hline \end{array}$	4582	4582	4626	4669	$\begin{array}{r} 4718 \\ 51 \\ \hline \end{array}$	4738	4754	4865	4876	4877	4913
1.	Year 1974 Day/month 13.7	$\begin{aligned} & 1974 \\ & 27.11 \end{aligned}$	1975 9.1	1975 24.4	$\begin{aligned} & 1975 \\ & 18.6 \end{aligned}$	$\begin{aligned} & 1975 \\ & 19.8 \end{aligned}$	$\begin{aligned} & 1975 \\ & 7.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1975 \\ & 20.11 \\ & \hline \end{aligned}$	$\begin{array}{r} 1976 \\ 20.1 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 8.6 \\ \hline \end{array}$		1)			
2.	Total sampla (nos.) 270	217	226	549	804	406	578	684	541	723		The comp	NR Gr osed	$\begin{aligned} & \text { is } \mathrm{is} \\ & \text { aininly } \end{aligned}$	$\begin{aligned} & \text { like } \\ & \text { of } \end{aligned}$
3.	Total $⿻_{4}^{8}+8$ (nos.) 195	92	122	149	122	149	273	219	292	288		$2)^{w h i c l}$	h hav	or	11 d
4	§ +9 NR \% 11.8	63.0	76.2	36.9	32.0	32.9	19.0	24.2	10.3	62.5		The	NR g	up	inc
5	\% +8 HR \% 88.2	-	-	4.0	68.0	63.1	0.7	-		37.5		$3)^{\operatorname{man}}$	lare	mal	
6	$9 \mathrm{BR} \%$	37.0	23.8	29.1	-	4.0	80.2	75.8	89.7	-			NR g	up 1	ely
7.	Size above which NR-individuals are 2bL considered 8 or 9 (mm)	24L	23L	275	22.5 d	22.5 d	230	$23 d$	22.54	22d		of a tran 4)	nimal aitio	whic sl st	$\begin{aligned} & \text { are } \\ & \text { iges. } \end{aligned}$
8.	Reference no. and footnotes	$\begin{array}{r} 5002 \\ 3) \end{array}$	5016 1)	$\begin{array}{r} 5031 \\ 1) \end{array}$	5043 2)	$\begin{array}{r} 5110 \\ 2) \end{array}$	51.34	5158	$\begin{array}{r} 5176 \\ 1) \end{array}$	5209		The rece	NR gr ntly	up in hatche	lude ege

TABLE 5. Samples of Pandalus borealig from the Sukkertoppen Deep, ICNAF Div. IC. In this tavle the length frequency diagramg has been to judge the likely number of individuals without roe which may belong to the trangitionals or females, and the aize above which animals are regarded as bolonging to this category is given in the table. Percentages are
 measure. $L=$ lateral meatare of carapace.

1. Year	$\begin{array}{r} 1970 \\ 1.6 \\ \hline \end{array}$	$\begin{array}{r} 1971 \\ 28.5 \\ \hline \end{array}$	$\begin{aligned} & 1971 \\ & 20.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 1972 \\ 14.4 \\ \hline \end{array}$	$\begin{array}{r} 1972 \\ 14.6 \\ \hline \end{array}$	$\begin{aligned} & 1973 \\ & 13,2 \\ & \hline \end{aligned}$	$\begin{aligned} & 1973 \\ & 12.3 \end{aligned}$	$\begin{array}{r} 1973 \\ 28.6 \\ \hline \end{array}$	$\begin{array}{r} 1974 \\ 18,6 \\ \hline \end{array}$	$\begin{gathered} 1974 \\ 4.12 \\ \hline \end{gathered}$	$\begin{array}{r} 1975 \\ 21.4 \\ \hline \end{array}$	$\begin{array}{r} 1975 \\ 24.6 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 14.1 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 30.4 \\ \hline \end{array}$	$\begin{array}{r} 1976 \\ 9.6 \\ \hline \end{array}$
2. Total sample (nos.)	341	171	226	189	151	144	121	242	265	117	122	478	591	595	460
3. Total \% ${ }_{\text {\% }}$ (noa.)	288	150	182	125	133	116	111	217	208	50	86	257	338	279	335
4. $\%+8$ NR \%	99.7	100.0	17.6	80.8	36.8	44.0	54.1	48.8	24.0	54.0	98.8	10.5	95.0	88.9	32.8
5. $\%+9$ HR \%	0.3		2.4	-	63.2	-		51.2	76.0	-		89.5		1.8	67.2
6. \% BR \%	-	-	-	19.2	-	56.0	45.9	-	-	46.0	1.9	-	5.0	9.3	-
Size above which 7. NR-individuąls are considered 8 or 9 (mm)	-	251	26L	26L	261	26L	251	25L	25L	26L	26L	24d	22d	22.5 d	23.5d
8. Reference no. and foot notes	4375	$\begin{array}{r} 4532 \\ 2) \end{array}$	4583	$\begin{aligned} & \text { 4621 } \\ & \text { 1) } 3 \text {) } \end{aligned}$	4637	4719	$\begin{array}{r} 4726 \\ 1) \end{array}$	4759	$\begin{array}{r} 4916 \\ 1) \\ \hline \end{array}$	5003	5030	5047	$\begin{array}{r} 5175 \\ 1) \end{array}$	$\begin{gathered} 5187 \\ \text { 1) } \end{gathered}$	5215

1) The NR group is likely to be composed mainly of transitionals which have or will develop head roe.
2) Most of those without roe have reoently hatohed the egga (astae on the pleopods).
3) The NR group contains gome which recently hatched the eggs.
4) The FR group may contain some large males.

Fig. 8. The Christianshid Ground samples
see tact pages 4-5.

