International Commission for

the Northwest Atlantic Fisheries

ICNAF Res.Doc. 76/VI/27
Corrigendum
Serial No. 3807
(D.c.3)

ANNUAL MEETING - JUNE 1976
Preliminary stock assessments of roundnose grenadier in ICNAF Subareas $0+1$ and $2+3$
by
H. Borrmann

Institut far Hochseefischerei und Fischverarbeitung Rostock-Marienehe
German Democratic Republic

Corrections:

Page 5, line 33: for $M=0.1$, read $M=0.2$.
Page 11, Fig. 2: for $t_{0}=0.034$, read $t_{0}=3.034$.
-
the Northwest Atlantic Fisheries

Serial No. 3807
ICNAF Res.Doc. 76/VI/27
(D.c.3)

ANNUAL MEETING - JUNE 1976
Preliminary stock assessments of roundnose grenadier
in ICNAF Subareas $0+1$ and $2+3$

by

H. Borrmann

Institut fur Hochseefischere1 und Fischverarbeitung
Rostock-Marienehe
German Democratic Republic

AEstract

Stock sǐes and fishing mortalities of roundnose grenadier in SA $2 / 3$ and SA $0 / 1$ were calculated by using cohort analysises cealing with age compositions and lentth compositions, respectively. Further Y / R curves and sustainable yiedids were estimated. ' Nw options of M were used ($M=0.1$ and 0.2). Biological input data are only used from G.D.R. sampling.
It can $\mathrm{c} u$ seen from the results that the fisning mortalities anc catches of the last years are in the range of the calculated $F_{0.1}$ ano sustainable yields at $F_{0.1}$
biaterial and wethods
All calculafions are based on iciological aata sampled by G.D.R. in the $4^{\text {th }}$ quarter of the year. Sampling and data preparation were done by H. KOOH and P. ERNST. For the assessments for ICNAF Subareas $2 / 3$ biological data were only available from ICNAF Subarea 2. Moreover for the two wanageuent units (SA $2 / 3$ and $S A 0 / 1$) representative biological data were not available for all years. Therefore we nad to take for the analysis cata from different years.

Coiort analysises dealing with length composition data (JOMHS, 1974) and with age composition data (POPE, 1972) were uaoie. Cohurt analysises dealing with length composition data were made, because age composition data based on the lutest age rcaaing technic (KOCH, 1976; SAVVATIKSKY, KOCH, ERNST, 1976) are ready only for the years 1973 and 1974 until now. Because recruits and mean age of recruitment

A 2

(t $9^{\prime \prime}$) were needed for the calculations of sustainable yields, cohort analysises dealing with age compositions were made with some assumptions.

Yield calculations were made using the Beverton and Holt yield equation solved by incomplete Beta Function.

Input data for cohort analysis dealing with length compositions:

Length composition of total catch was calculated for the years 1969, 1970, 1971, 1973 and 1974 for SA 2/3 and for 1969, 1970, 1973 and 1974 for SA 0/1. Used length compositions can be seen in Table 5. The mean of these compositions sumned up in $6 \mathrm{~cm}-\mathrm{groups}$ was used for the cohort analysis (Table: 1,3).
Mean weights per length group were used from the length weight relation shown in Fig. 1 .
$M=0.1$ and 0.2 and final $F=0.1$ (estimated by a first run) were used. Growth parameters were calculated from mean length per age group. The parameters for SA $2 / 3$ are:

$$
I_{\infty}=87.4290, K=0.0908, t_{0}=-0.1646 \underset{(\text { ICNAF Subdivision }}{2 \mathrm{H}, 1974)}
$$

for SA 0/1:

$$
L_{\infty}=80.6507, K=0.119, t_{0}=3.0340\left(\begin{array}{c}
\text { (ICNAF Subdivision } \\
1 \mathrm{C}, 1973)
\end{array}\right.
$$

(see also Fig. 2)

Input data for cohort analysis dealing with age compositions: The mean age composition of 1973 and 1974 was used to distribute the mean total number in the catches used for the cohort analysis dealing with length compositon. Used age compositions can be sean in Table 6. It was assumed that this age composition corresponds to the age composition or a medium sized yearclass and that the strength of the yearclasses varies only to a small extent, which could be concluded from length compositions used for cohort analysis dealing with the length compositas. For H and final F the same values as for cohortanalysis dealing with length composition were used: $M=0.1$ and 0.2 , final $F=0.1$.

Input data for the calculation of Y / R curves and the sustainable yields:

Calculations of Y / R were made for $M=0.1$ and $M=0.2$. K and t_{0} were used irom the growth curves for length (see above). d_{∞} were calculated with I_{∞} and the lengtin wei:ght relations
for Subarea 2 and $3:$

$W_{\infty}=1364$
for Subarea 1 and 0 :
$W=0.0441 \cdot L^{2.3154}$ (Subarea: 1 and $0,1 y 74$)
$W_{\infty}=1145$
(see also Fig. 1)

The mean age of recruitment (ρ^{\prime}) was calculated by the expression

(BEVERTON and HOIT, 1957)
and the F values from cohort analysis dealing with age composition. Ihe full recruited age group was about 15 and $t \rho$ ' about 13 in koth areas.
$t \rho=3$ and $t_{\lambda}=22$ were used because the age compositions comprise thistrange.
δ wis used from the length-weight relations shown above.
All input acita can also be seen in Fig. ?。

The sustainable yields were calcured by multiplying the nu ber of fish in the stock at age group 3 (results of the cohort analysis dealing with age compositions) $\mathrm{b}_{\tilde{U}}$ the Y / R at $F_{0.1}$ and $F_{\text {max }}$, respectively, of the corresponding yield curves.

Rusults
Subarea 2/3:
the results of the cohort analysis are shown in lable 1 and 2. The calculated stock size are 1620 millions (using length coupositions) and 1433 millions (using age compositions) for $M=0.1$, and 6957 millions and 3811 millions, respectively for $\mathbb{L}=0.2$.

The mean F-values for the total stocks are 0.016 and 0.044 , respectively using $M=0.1$, and 0.004 and 0.017 , respectively using $\mathrm{H}=0.2$. Fishing mortalities for the full rectuited stock are 0.534 using $\mathrm{M}=0.1$ and 0.242 using $\mathrm{mi}=0.2$.

The results of the yield estimations can be seen in the folloring Table:

Y / R curves are plotted in Fig. 3.

Subarea $4 / 1$:
The results of the cohort analysis are : shown in Table 3 and 4. The calculated stock sizes are 211 millions (using length compositions) and 243 millions (usjng age compositions) for $M=0.1$, and 578 millions and 918 millions, respectively for $M=0.2$.

The mean F-values for the total stock are 0.034 and 0.044 , respectively using $M=0.1$, and 0.014 and 0.016 , respectively using $\mathrm{Mi}=0.2$. Fishing mortalities for the full recruitod stock are 0.316 using $M=0.1$ and 0.221 using $M=0.2$.

The results of the yield estimations can be seen in the following trable:

	$F_{0.1}$	$\begin{aligned} & Y / R \\ & (\mathrm{~kg}) \end{aligned}$	$(100$	F	$\left(\frac{Y / R}{(k g}\right)^{\prime}$	$\begin{gathered} \mathbf{Y} \\ (1000 \end{gathered}$
M $=0.1$	0.3	0.164	7.4	1.6	0.182	8.3
$\mathrm{M}=0.2$	0.5	0.055	9.8	>2.0	0.064 ($\mathrm{F}=2$)	11.4

Y/R curves are plotted in Fig. 3.

Discussion

The calculated stock sizes using the two cohort analysis were in somecases very different. This may be caused by the sensitivity of the cohort analysis dealing with length compositons to the paraueters K and I_{∞}. The sensitivity to L_{∞} can be seen in the result of the first calculation for $H=0.2$ for $\mathrm{SA} 2 / 3$ where we started our calculation at lencth group 84 and got a stock size or 13134 millions. The reason for the great difference was the swall difference between L_{∞} and the final length group that caused a too large stock size at the final length group.

Therefore we started our final calculations for $N=0.2$ with length eroup 78 to which we also added the catches of longer fish. Shen we got the stock size. of 6957 millions.

The mean F values for the total stocks resulting from the two cohort analysises are not so different, especially for SA $0 / 1$. This may give us an indication that the and lengoth compositions in a good correspondence. It can also be seen that the F values are nearly the same for SA $2 / 3$ and $0 / 1$, expecially in the results of cohort analysis dealing with age compositions. This is also true for the mean F values for the full recruited stock. In SA 2/3 the mean Z-value for the full recruited stock is the same as PINHORN (1974) \&ot from the calculation of the catch curve, thouth the age of full recruitment was 12 instean of 15 in our calculations. Perhaps the difference is produced by former age reading technic or by the fact that the calculations are based on age compositons from different areas (Subarea 2 aho 3, respectively) and periods. But nevertheless it can be seen that the Z-values are the same for both areas and periods.

The wean lishing mortalities of the full recruited stocks of the last years are higier than $\mathrm{F}_{0.1}$ only for $3 \mathrm{~A} 2 / 3$ and $\mathrm{N}=0.1$. It can be stated that the mean fishing mortalities of last years were on an optimum level for the exploitation of the stocks. The resulting sustainable yield at Fo. 1 are 31800 tons (i. $=0.1$) and 40600 tons $(\mu=0.2)$ for $S A 2 / 2$, and 7400 tons ($M=0.1$) and 9800 tons $(M=0.2)$ for $S A 0 / 1$. This means that the wean catches of 34048 tons (1970-1974) from LA 2/3 and of 0025 (1970-74) from SA $0 / 1$ were in the range of the possible mustainable fields at $\mathrm{F}_{0.1}$. The MSY are 12-22 $\%$ higher than the suistainaile yields at $F_{0.1}$. For the Y / R curves are ilat-topped and the spawning stock-recruitment relation is not known it woula be better to take into consideration the sustainable yiolds at $F_{0.1}$. The MSY calculated by PINHORN (1974) for SA $2 / 3$ using $\mathrm{L}=0.1 \mathrm{is}$ only about 50% of the amount we got by our calculation using an other method and input data.

References

BEFGRTON, ReJ.H. On the Dynamios of Exploited Fish an S.J.HOLT 1957 Populations. London, 1957

JONAS, R. 1974 Assessing the long term effects of changes in fighing offort and mesh size from length composibion data
ICES GM 1974 Demersal/Fish
(Nthn) Cttee, Doc. no. F 33

```
KOCH, H. 1976 A contribution on the methodics of age
    detarmination in Roundnose Grensaier
    (C. rupestris GUNR)
    ICNAF Res. Doc }197
```

PIMHORN, A.T. 1974 Preliminary eatimates of austainable
Fiold for roundnose gronadiers
(Macrourus rupeatris) in ICNAF Subareas
2 and 3

Voprosy Irhtiologii, Moscow (in press)

Luble 1:	-ohurt analysis using rouncinose grenadier length composition data for 1969-1971, 1973 and 1974, ICNAF Subareas 2 and 3

	$\infty_{\infty}=87$	$=0.0908$	$n=0.1$		$M=0.2$	\therefore / Z	F
I	$\stackrel{C}{L}_{\left(\mathrm{millins}^{(1)}\right.}$	${ }^{{ }^{\mathrm{IN}} \mathrm{I}} \mathrm{mions} \text {) }$	F/Z	7	$\stackrel{N_{I_{1}}}{\text { (milions) }}$		
12	ᄂ. 02	267.jo	0.001	0.0001	1543.05	0.0001	0.00002
16	U. 11	244.49	0.005	0.0005	1284.09	0.0005	0.0001
24	0.33	220.48	0.014	0.001	1051.17	0.0016	0.0003
30	0.68	197.03	0.029	0.003	843.10	0.004	0.0008
36	1.31	174.23	0.055	0.006	659.55	0.015	0.003
42	2.75	150.59	0.112	0.013	572.26	0.018	0.004
48	6.17	126.11	0.230	0.030	415.41	0.046	0.010
¢4	10.68	Y9. 32	0.365	0.057	282.48	0.098	0.022
60	13.3?	70.08	0.467	0.088	173.12	0.159	0.038
66	11.04	41.55	0.501	0.100	89.49	0.203	0.051
72	6.09	1ソ. 52	0.469	0.088	35.08	0.224	0.058
78	2.29	6.53	0.392	0.064	7.93	0.333	0.100
4	0.35	4.70	0.500	0.100			
1util	35.15	1619.71			6956.73		
, vei ${ }_{6}$	d wean			0.016			0.004

L'able 2: Cohort analysis using roundnose grenadier age composition data for 1973 and 1974, ICNAF Subareas 2 and 3

$\mathrm{H}=0.1$			退 $=0.2$				
Age	C	1	F / Z	F	N	F / Z	F
3	C. 063	189.498	0.0046	0.0005	741.797	0.00062	0.0001
4	0.165	171.381	0.010	0.0010	607.258	0.0015	0.0003
5	0.221	154.911	0.015	0.0015	497.033	0.0024	0.0005
6	0.303	139.955	0.022	0.0022	406.737	0.0041	0.0008
7	0.606	126.345	0.048	0.0050	332.735	0.010	0.002
3	0.662	113.741	0.058	0.0061	271.873	0.013	0.003
9	1.351	102.285	0.123	0.0140	221.992	0.033	0.007
10	3.115	91.264	0.267	0.036	180.530	0.088	0.019
11	4.548	79.614	0.382	0.062	144.987	0.150	0.035
12	5.293	67.710	0.461	0.086	114.590	0.207	0.052
13	6.257	56.230	0.554	0.124	89.029	0.287	0.081
14	6.257	44.926	0.612	0.158	67.229	0.351	0.108
15	7.498	34.698	0.719	0.256	49.381	0.476	0.182
16	0.230	24.263	0.756	0.310	33.645	0.531	0.226
17	6.312	16.027	0.838	0.517	21.909	0.652	0.374
18	3.005	8.497	0.819	0.452	12.226	0.609	0.312
19	0.799	4.830	0.655	0.190	7.291	0.391	0.228
20	1.461	3.610	0.843	0.537	5.246	0.643	0.360
21	0.221	1.877	0.568	0.131	2.973	0.299	0.085
22	0.744	1.488	0.5	0.1	2.234	0.333	0.100
lotal	55.131	1433.150	$\mathrm{F}_{3}+=0.044$		3810.695		
						$\mathrm{F}_{3}+=0.017$	
			$\mathrm{F}_{15}{ }^{+}=0.334$				$\mathrm{F}_{15}+=0.242$

s'able 3: Cohort analysis using roundnose grenadier lengtn composition data for 1969, 1970, 1973 and 1974, ICNAF Subareas 1 and 0

	$L_{\infty}=8$	$K=0.119$	$\underline{\mathrm{L}}=0.1$		$M=0.2$		F
L	$\stackrel{\mathrm{C}_{\mathrm{L}}}{\text { (millions }}$	$\stackrel{\mathrm{N}_{\mathrm{I}}}{\text { (mions) }}$	F/Z	F	$\stackrel{\mathrm{N}_{\mathrm{L}}}{\text { (millions) }}$	F / Z	
18	U. 05	39.31	0.015	0.002	136.94	0.002	0.0004
24	C. 17	36.04	0.050	0.005	115.38	0.008	0.002
30	0.31	32.61	0.086	0.009	95.32	0.017	L. 003
36	0.83	26.49	0.200	0.025	76.61	0.048	0.010
42	1.82	24.05	0.362	0.057	59.15	0.111	0.025
48	2.42	19.82	0.449	0.081	42.74	0.166	0.040
54	3.00	14.43	0.548	0.121	28.12	0.241	0.064
60	2.60	3.96	0.570	0.133	15.69	0.289	0.081
66	1.30	4.40	0.485	0.094	6.69	0.266	0.072
72	0.46	1.72	0.319	0.047	1.80	0.333	0.100
78	0.14	0.28	0.500	0.100			
'l'otal	13.10	211.41			578.44		
weigt	d mean			0.034			0.014

Table	4: Cohort analysis using roundnose grenadier age composition data for 1973 and 1974, ICNAF Subareas ind a 0						F
		$4=0.1$			$m=0.2$		
$A_{8} ;{ }^{\text {e }}$	$\stackrel{\text { C }}{\text { (millions) }}$	$\stackrel{N}{\text { (millions) }}$	F / Z	F	$\stackrel{N}{\text { (millions) }}$	F / Z	
3	0.026	45.417	0.006	0.001	178.481	0.0008	0.0002
4	0.052	41.069	0.013	0.001	146.105	0.0020	0.0004
5	0.085	37.110	0.024	0.002	119.574	0.0039	0.0008
6	0.098	33.497	0.030	0.003	97.822	0.0055	0.0011
7	0.125	30.215	0.039	0.004	80.001	0.0086	0.0017
8	0.249	27.045	0.089	0.010	65.386	0.021	0.0042
y	0.492	24.234	0.177	0.022	53.308	0.049	0.0103
10	0.708	21.459	0.261	0.035	43.200	0.084	$0.01 \beta^{-1}$
11	0.866	18.743	0.332	0.050	34.729	0.122	0.028
12	0.938 1.272	16.136 13.708	0.386 0.506	0.063 0.102	27.650	0.160	0.038
14	1.272 2.144	13.708	0.506 0.690	0.102 0.223	21.789 16.638	0.249 0.431	0.066 0.141
15	2.046	8.088	0.753	0.304	11.723	0.515	0.1212
16	1.483	5.372	0.772	0.339	7.747	0.541	0.236
17	0.669	3.445	0.694	0.227	4.996	0.443	0.159
10	0.754	2.481	0.791	0.378	3.485	0.574	0.269
19	0.426	1.528	0.773	0.341	2.171	0.547	0.242
20	0.353	0.977	0.842	0.533	1.392	0.646	0.365
21	$0 . C 48$	0.510	0.690	0.223	0.784	0.424	0.147
22	0.184	0.368	0.500	0.100	0.553	0.333	0.100
'1'otal	13.113	342.545			917.584		
			$\mathrm{F}_{3}+=0.044$				+ $=0.016$
			$\mathrm{F}_{15} \mathbf{t}=0.316$				$5^{+}=0.221$

Table 5: Roundnose grenadier length compositions data used for cohort analysis (per thousand)

SA 2					SA 0/1				
lengthgroup	1969	1970	1971	1973	1974	1969	1970	1973	1974
15 -	-	1	-	-	1	-	-	-	1
18 -	-	1	-	$\dot{\square}$	3	-		-	2
21 -	-	2	-	-	4	1	1	-	5
24 -	-	6	-	6	6	-	3	-	10
27 -	-	10	1	-	7	2	8	-	10
$30-$	-	16	2	-	5	7	15	1	11
$33-$	-	26	4	-	5	8	15	3	17
$36=$	2	31	6	-	7	10	16	12	29
$39-$	2	35	12	2	9	21	22	23	62
42 -	10	38	17	7	17	35	33	29	91
$45-$	26	43	26	9	41	64	59	47	Y
48 -	47	61	35	17	64	82	96	62	92
51 -	62	77	57	32	99	125	123	32	85
54 -	75	93	82	49	124	142	151	123	92
57 -	93	106	104	75	124	122	137	150	86
$60-$	101	113	127	131	124	88	108	164	103
	124	87	128	149	114	89	79	123	76
66 -	101	77	115	156	88	70	54	86	50
65^{-}	142	60	103	134	72	41	39	48	38
$72=$	83	52	75	101	44	40	21	26	21
75 -	62	29	47	75	24	26	11	13	10
78 -	49	21	31	38	13	19	6	5	7
$31-$	21	9	18	18	5	4	2	2	3
84 -	-	3	7	7	-	3	1	1	1
87 -	-	2	2	-	-	1	-	-	-
	-	1	1	-	-	-	-	-	-
$\begin{aligned} & \text { No. of } \\ & \text { fish } \end{aligned}$	$\begin{aligned} & 387 \\ & \text { asure } \end{aligned}$		6244	2032	589	1200	9426	7759	9654

Table 6: Roundnose grenadier age compositions used for cohort analysis (per thousand)

Fig. I Length weigth Relation for Roundnose Grenadier

Fig. 2 Theoreticial Length-Age Curve for Roundnose Grenadier, bosed upon v BERTALANFFY-Function

Fig. 3 Yield/Recruit for Roundnose Grenadier Stocks A-ICNAF Subarea $1+0$
B-ICNAF Subarea 2+3

