International Commission for

the Northwest Atlantic Fisheries

<u>Serial No. 3895</u> (D.c.1) ICNAF Res.Doc. 76/VI/83

ANNUAL MEETING - JUNE 1976

Areal variations in zooplankton volumes on the Northeast <u>Continental Shelf in spring and autumn 1973</u>

by

Kenneth Sherman, John B. Colton, Jr. Jeanne M. St. Onge-Burns, and Elizabeth Howard National Marine Fisheries Service Northeast Fisheries Center Narragansett, Rhode Island 02882

Introduction

The importance of inter and intra species predator-prey relationships in understanding the dynamics of multispecies fisheries has been recently reemphasized in a number of reports (Gulland 1970; ICES 1975). Useful models incorporating environmental affects on stock-recruitment problems have also been recently developed (Lett, et al., 1975; Lett, Kohler, and Fitzgerald, 1975; Lett and Kohler, 1976). These models, while they hold promise for accelerating the development of alternative management strategies in fisheries operating at different trophic levels, are dependent on environmental and trophodynamic information which is at present fragmentary.

To expand the trophodynamic data base in the ICNAF area, a series of environmental and planktological observations were initiated in 1971 on the Groundfish Surveys conducted by the Northeast Fisheries Center (NEFC). Initial analyses of these data are now underway. The present report provides a comparison of the zooplankton standing stock of three important fishing areas - western Nova Scotia, Georges Bank, and the Gulf of Maine. Subsequent reports will deal with the species composition, distribution, and dynamics of the plankton communities in these areas.

<u>Methods</u>

During the spring and autumn Groundfish cruises of the NEFC in 1973 paired 60 cm bongo nets fitted with 0.333 and 0.505 mm mesh were towed at selected locations during routine operations. Each tow filtered from $100 - 400m^3$ of water and was made from the surface to a variable depth of 25 - 100 meters depending on bottom topography at 3.5 kts for a duration of 5 - 15 minutes. The present analysis is based on the wet displacement volumes of zooplankton from 0.333 tows only. In the laboratory, displacement volumes were determined using the MARMAP method (Jossi, et al., 1975). The plankton sample with its preserving liquid is measured in a graduated cylinder, poured through a mesh cone into a second cylinder, and drained until the interval between drops from the bottom of the cone diminishes to 15 seconds. The volume of the liquid is read and the displacement volume of the sample determined by difference.

Zooplankton Volumes

Zooplankton volumes expressed as cubic centimeters per 100m³ water strained

Presented as Working Paper 76/IV/110 at Environmental Working Group meeting, Szczecin, Poland, April 1976.

were tabulated by station and area for each season. To obtain measures of the variation among the individual samples, means, ranges, standard deviations, and coefficients of variation were calculated for each area (Tables 1 and 2). Comparisons of the biomass among each of the areas were made with the Kruskal-Wallis one-way analysis of variance (H); Mann-Whitney U Tests (Z) were used to compare between area differences (Siegel, 1956)

During both seasons the sampling was not sufficiently close for adequate contouring of zooplankton volumes. Considering the wide range in volumes in each of the areas, horizontal plots were prepared (Figs. 1 and 2) using a factor of four to indicate increasing volume, following the procedure used in CalCOFI (Smith, 1971).

Areal Comparisons

A summary of H and Z values and associated probabilities are given in Tables 3 and 4. In spring the differences among zooplankton volumes in the three areas were significantly different (P<.05). Lowest volumes were in the Gulf of Maine. The biomass values of zooplankton in the Western Nova Scotia area were significantly higher than in the other two areas (P<0.05). The number of samples collected from waters off southern New England was too low to adequately represent the area

In autumn the zooplankton was approaching the annual winter minimum (Bigelow, 1926). The standing stock of zooplankton was different among the three areas (P<.001). Maximal concentrations of zooplankters were on Georges Bank. The lower volumes in the Gulf of Maine and Western Nova Scotia were not significantly different between these two areas (P>.05).

References

Bigelow, Henry B. 1926. Plankton of the offshore waters of the Gulf of Maine. Bulletin of the U.S. Bureau of Fisheries, Vol. 40, for 1924, part 2. (Document 968).

Gulland, J.A. 1970. "Food chain studies and some problems in world fisheries." In <u>Marine Food Chains</u>, editor J.H. Steele. University of California Press, Los Angeles.

ICES. 1975 Symposium on the Changes in the North Sea Fish Stocks and their Causes. 23.6.75/Aarhus. Denmark. Unpublished discussion papers.

Jossí, Jack W., Robert R. Marak, Harold Petersen, Jr. 1975. MARMAP Survey I Manual, At-Sea Data Collection and Laboratory Procedures. MARMAP, NMFS. unpublished document.

Lett, P.F. and A.C. Kohler. 1976. Recruitment: a problem of multispecies interaction and environmental perturbation, with special reference to Gulf of St. Lawrence herring (<u>Clupea harengus</u> L.). ICNAF Res. Doc. 76/VI/4.

Lett, P.F., A.C. Kohler, and D.N. Fitzgerald. 1975. A model of the interactions of temperature with the recruitment mechanism for the Gulf of St. Lawrence cod stock. ICNAF Res. Doc. 75/10.

Lett, P.F., W.T. Stobo, and W.G. Doubleday. 1975. A system simulation of the Atlantic mackerel fishery in ICNAF Subareas 3,4, and 5 and Statistical Area 6; with special reference to stock management. ICNAF Res. Doc. 75/32.

Siegel, Sidney. 1956. <u>Nonparametric Statistics for the Behavioral Sciences</u>. McGraw-Hill Book Company, New York.

Smith, Paul E. 1971. Distributional Atlas of Zooplankton Volume in the California Current Region, 1951-1966. CalCOFI Atlas No. 13, Scripps Institution of Ocean ography.

	<u>es Bank</u>	W. Nova Scotla	Gulf of Maine
<u>Sta</u> .#		<u>Sta.# Yol.</u>	Sta. Vol.
157	58	262 125	220 36
158 161	65	263 29	222 13
163	26 17	265 170	239 51
164	20	266 52 268 104	240 70
165	ົ້າ	273 48	24]]
166	17	274 36	243 14 244 20
168	9	276 68	247 55
169	27	277 63	248 34
174	22	278 178	249 27
175 177	22	279 438	250 26
178	137 84	281 57	251 21
180	39	282 66 283 71	254 50
181	103	284 46	257 38 258 51
182	56	285 73	259 43
183	78	286 63	260 65
185	68	287 37	264 15
186 188	19 77	307 35	315 78
195	63	308 42 313 54	317 19
196	96	313 54 314 72	<u>318 52</u>
197	7	319 65	Mean = 37.1
198	10	320 64	Std. Dev. = 20.9
202	55	322 17	Coeff. of Var. =
206	71	324 19	Range = 77
207 208	59 17	326 22	
210	ίí	327 13 328 33	
212	6	<u> </u>	
213	46	Mean ≈ 74.5	
214	117	Std. Dev. = 80.4	
216 217	16 12	Coeff. of Var. = 1.08	l i i i i i i i i i i i i i i i i i i i
218	11	Range = 425	
223	6		
224	4		
226	60		
228	41		
229 230	5 62		
230 231	49		•
232	29		
233	99		
235	9		
236	143		
237 238	27] 19		
242	40		
255	9		
fean = Std. De	48.0 ev. = 48.3 of Var. = 1.0	1	

. . .

• . •

•

•

Table 1: Biomass (cc/lOOm³) at individual stations in three areas during Spring, 1973.

,

.

. .

.

•

. -

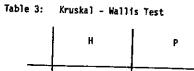
.

ч

George	s Bank	W. Nova Scot <u>ia</u>	Gulf of	f Maine
Sta.#	Vol.	Sta.# Vol.	Sta.	Vol.
126	8	217 11	196	7
127	10	218 15	199	10
128	32	219 21	200	63
129	36	220 16	201	30
130	85	221 5	202	41
131	47	222 19	205	12
133	53	223 7	210	7
134	78	228 9	211	27
136	55	229 24	212 213	27 43
137	62	230 17 231 22	214	17
138 139	47 77	231 22	215	п
140	43	235 6	226	39
140	78	236 30	232	15
142	38	238 22	233	12
143	7	239 21	277	18
144	19	240 14	281	8
145	61	241 14	282	6
151	50	242 28	283	7 8
152	39	243 28	284	8
153	86	244 36	285	8
155	73	246 13	286	ĩ
157	37	247 12	289	.8
158	23	250 19	294	11 25
159	19	255 11	295 296	18
160	4	256 8 259 12	297	9
163	26 41	259 12 260 10	298	18
164 167	74	261 13	299	20
168	66	262 23	300	16
169	78	263 15	301	18
170	14	265 8	302	15
171	35	269 13		
172	72	270 28	Mean =	
173	68	271 17	Std. D	ev. = 13.1
174	29	<u>272 22</u>		of Var. =
175	32		Range	= 5/
176	55	Hean =16.6		
178	19	Std. Dev. = 7.6		
181	49	Coeff. of Var. = 0.46		
182	83	Range = 31		
183	94 112			
184 188	42			
189	4			
191	161			
192	35			
193	53	,¥		
209	15			
Mean a				

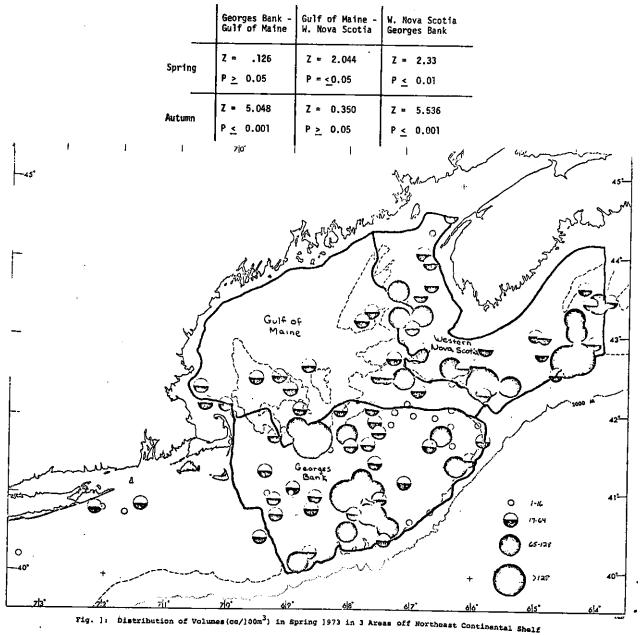
Table 2:	Biomass (cc/100m ³) at individual stations in three areas during	
	Fall, 1973.	

1 = 0.72

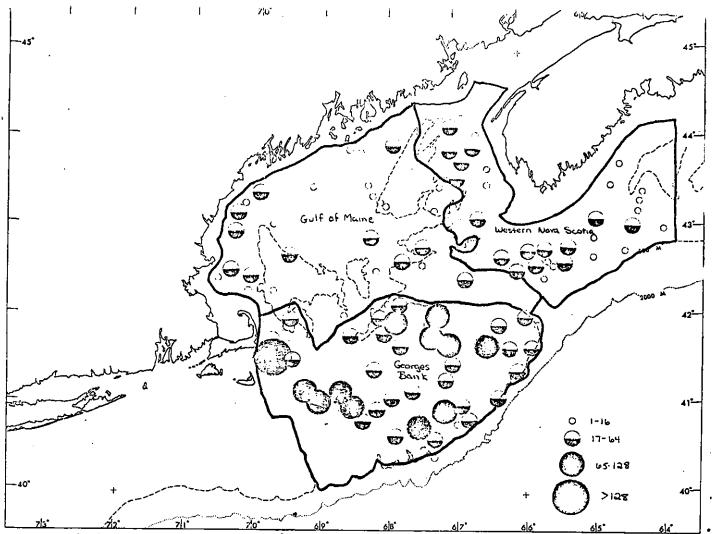

•

. .

•


Mean = 49.5 Std. Dev. =30.9 Coeff. of Var. =0.52 Range = 157

. •



Spring	7.39	<u><</u> 0.05
Autumn	39,63	<u><</u> 0.001

Table 4: Mann-Whitney U-Test

.

- 6 -

Fig. 2: Distribution of Volumes(cc/]00m³) in Fall)973 in 3 Areas off Northeast Continental Shelf

-

.