International Commission for

the Northwest Atlantic Fisheries

ANNUAL MEETING - JUNE 1976
 Report of the North-Western Working Group ${ }^{1}$

Charlotteniund, 8-12 March 1976

Abstract

The Report of the Working Group has been reproduced in part only. Chapters A, D, and E, Tables 1-11 and 22-33, and Figures 1-8 and 10 reproduced here are pertinent to the Greenland-Iceland cod stock rela- tionship which the Commission, at its June 1974 and again at its 1975 Annual Meetings, asked NEAFC and ICES to study with a view to ensuring adequate management.

1 This Report has not yet been approved by the International Council for the Exploration of the Sea; it has, therefore, at present the status of an internal document and does not represent an advice given on behalf of the Council. The proviso that it shall not be cited without prior reference to the Council (General Secretary, ICES, Charlottenlund Slot, DK-2920 Charlottenlund, Denmark) should be strictly observed.

Contents

Page
A. INTRODUCTION 1

1. Terms of Reference 1
2. Participants 1
3. Previous and Present Assessments 1
B. COD IN DIVISION Va - ICELAND GROUNDS 2
4. Nominal Catches 2
5. Spawning and Non-Spawning Fisheries 2
6. Effort 2
7. Age Composition of Landings 3
8. Mean Weight by Age 3
9. Virtual Pcpulation Analysis 4
10. Stock Biomass 5
11. Recruitment 7
C. HADDOCK IN DIVISION Va - ICELAND GROUNDS 8
12. Nominal Catches 8
13. Effort and Catch per Unit of Effort 1970-75 8
14. Catch in Numbers by Age Groups 8
15. Mean Weight by Age 8
16. Input Data to VPA 9
17. Results of VPA 9
18. Stock Size 9
19. Yield Curves 9
20. Biomass of Stock 10
21. Catch Predictions 10
D. COD GREENLAND 10
22. Nominal Catch (ICES Sub-area XIV and ICNAF Divs. lE-1F) 10
23. Effort 12
24. Catch in Numbers by Age Groups 12
25. Mean Weight by Age 13
26. Natural Mortality and Emigration 14
27. Input Data to VPAs of Cod at Greenland 14
28. Results of the VPAs and Predictions of Stock Size and Catches for 1976-78 14
E. INTERRELATIONSHIP BETWEEN THE COD STOCKS AT ICELAND AND GREENLAND 15
29. Introduction 15
30. Migration of Adult Fish from West to East Greenland and to Iceland 15
31. Recruitment to the West Greenland Stock of Cod originating from East Greenland and Iceland 17
32. Management Problems for Cod at Greenland 18
TABLES I - 21 19
APPENDIX I, II and III (Iceland Haddock) 39
TABLES 22-33 42
FIGURES 1-10 54

Report of the North-Western Working Group

INTRODUCTION

1. Terms of Reference

At the Council's Statutory Meeting in 1975 the following resolution was adopted (C.Res.1975/2:29):
"It was deciced, that
(i) the North-Western Working Group should meet at Charlottenlund from 19-23 January 1976 (postponed to 8-12 March) under the chairmanship of Mr J Møller Christensen in order to:
(a) investigate the interrelationship between the cod at East and West Greenland and adjacent waters, and
(b) report separately on the state of the stocks of cod and haddock in Icelandic and adjacent waters.
(ii) ICNAF should be invited to participate in the discussions under Item (a), and that
(iii) this report be made available to the STACRES of ICNAF."

2. Participants

A C Burd	U.K. (England)
Sv. Aa. Horsted *	Denmark
J Jakobsson	Iceland
J S Joensen	Faroe Islands
B W Jones	U.K. (England)
R Jones	U.K. (Scotland)
P Kanneworff	Denmark
J Møller Jensen	Denmark
J Møller Christensen	
(Chairman)	Denmark
S A Schopka	Iceland
A Schumacher*	Germany, Fed.Rep.of
\emptyset Ulltang	Norway
* also representing ICNAF.	

3. Previous and Present Assessments

At its meeting in 1970 the North-Western Working Group made assessments of the stocks of cod and haddock in ICES Division Va (Iceland Grounds). It also made an estimate of the migration of mature cod from East Greenland to Iceland.
The assessments of the cod stocks in these areas were reviewed by the Joint ICES/ICNAF Working Group on Cod Stocks in the North Atlantic in 1972.
At the present meeting the North-Western Working Group made new assessments of the cod and haddock stock at Iceland Grounds (Sections B and C). The Group also made further analyses of the interrelationship between the cod stocks at Iceland and at Greenland (Section E) and assessed the cod stock at Greenland (ICES Subarea XIV and ICNAF Divisions 1E and 1F) (Section D).
5)
5) estimates of year class strength for the 1974-76 year classes as 2 year old fish.

Values of haddock year class strengths from the VPA results are given in Table 20 and for each of the three input sets of F used in these analyses. These show that the estimates of year class strength at age 2 years were effectively independent of the input F values for the year classes 1960-70. For these year classes the mean value was 64 million fish and this value has been used for the sets of predictions in Table 2l.A.

A second sets of predictions (Table 21.B) were made assuming 30 million fish for the 1974-76 year class strength, this being the lowest year class strength observed in the 1960s.
For each of the assumptions made about the F values in 1975, catches are expected to decline in 1976 and 1977. Estimates for 1978 depend on the values assessed for the strengths of the 1974-76 year classes. It should be noted that the further ahead the forecasts are made, the more depend the predictions on estimates of the recruiting year class strength. For example, a large proportion of the predictions given for 1978 in Table 21 are due to the values adopted for strengths of the 1974-76 year classes.
In view of the relatively high variability of year class strengths in practice, the confidence limits for these estimates and for the 1978 estimates in particular, are likely to be large.
D. COD GREENLAND
23. Nominal catch (ICES Sub-area XIV and ICNAF Divs. IE-IF)
23.1 Data_used

The catches of cod in Greenland waters are reported nationally through the STATLANT system to ICNAF and ICES for West Greenland (ICNAF Subarea 1) and East Greenland (ICES Sub-area XIV), respectively. The ICNAF Subarea 1 is further split into six divisions (Divs. lA-1F) whereas no further breakdown of the ICES Sub-area XIV exists at present.
In its present report the North-Western Working Group has as far as cod is concerned confined itself to analyses of the stocks at Iceland, at East Greenland and off the southern part of West Greenland (ICNAF Divs. 1E-1F), The inclusion in the analyses of only part of the ICNAF Subarea 1 creates some difficulties since some countries have reported part of their catch or even their total catch at West Greenland as Div. INK, i.e. without a breakdown on statistical divisions. It has. therefore. been necessarv to allocate such unsnecified
catches by divisions. The allocation here adopted is the one uaed by the Greenland Fisheries Institute (Horsted, unpubl.), and which is also used in analyses by ICNAF (Horsted, ICNAF Res.Doc. 75/31). The allocation is made partly on various assumptions, e.g. that unspecified catches from one country are distributed like specified catches from the same country, and partly on observations on fishing activities at Greenland. A full list of the allocations and the principles followed is available in the Greenland Fisheries Institute, but is not given here.
In order to show the magnitude of the problem, the unspecified catches (Div. INK) are given in Table 22 together with the total amount of these catches which is allocated to Divisions $1 E$ and $1 F$ and added to the specified Divs. $1 E-$ $1 F$ catches to give the best estimate of the actual nominal catch from these divisions. The figures for which a part or the total amount of catch has been based upon allocation from Division 1 NK are marked with an asterisk in the table. It will be seen that of the annual totals for Divisions $1 \mathrm{E}-1 \mathrm{~F}$ cod catches up to about 40% of the total have been allocated from unspecified catches, 1974 being the only year for which all catches were reported by divisions.
The nominal catches for the fisheries at East Greenland (Sub-area XIV) are readily available in ICES "Bulletin Statistique". For 1975, members of the Working Group supplied provisional data at the meeting. Sub-area XIV covers a wide area, and although the cod fisheries in that area are known to occur between Cape Farewell and the Dohrn Bank it is not possible to break catches down by smaller units. The problem of a probable break-down of Sub-area XIV was discussed briefly by the Working Group but referred to the ICES Statistics Committee.

23.2 Trends in catches

23.2.1 Nominal catches of codin INNAF Divisions 1E-1F, 1960-74

As explained in Section 23.1, the nominal catches for Divisions 1E-1F as set out in Table 22 contain part of some catches reported as West Greenland unspecified (ICNAF notation: Div. INK).
In the course of the late 1960s the cod fisheries at West Greenland (ICNAF Subarea 1) had a tendency to concentrate more on the southern Divisions (Divs. IE-1F) than previously, and by 1970 about half the West Greenland catch was taken in those Divisions. Whereas the overall Subarea l cod catches reached a maximum in 1962, the Divisions 1E-1F fishery obtained its highest catch in 1968. However, since then, this part of Subarea l has also faced the same drastic decline as the Subarea 1 fishery as a whole, and the relative importance of the Division has dropped again to about $\frac{1}{4}$ of the total of West Greenland (Table 25). The catch in Divisions 1E-1F by 1974 was only about 12% of the catch in the peak year 1968.
Catches for 1975 are not yet known by Division, but the overall Subarea 1 catch seems to have had a further small decline from 1974.
The fishery in Subarea 1 as a whole has been under quota regulation since 1974, but neither in 1974 nor in 1975 has the total allowable catch been taken. The TAC for 1976 is 46 thousand tons.
23.2.2 Nominal_catches of cod off East Greenland (ICES Sub-area XIV) 1960-75

The fishery off East Greenland is almost entirely due to trawling, with a few nations participating, primarily the Federal Republic of Germany and Iceland。 The target species are cod and redfish, and although fishing can be directed to one of these species the by-catch of the other species is normally so high that it seems proper to speak of a mixed fishery of the two species. Up to 1969 redfish made up the major part of the fishery but since 1970 cod is the predominant species.

In the period 1960-72 the total catch of cod in the area (Table 23) has fluctuated between 13 and 36 thousand tons (1960-72, mean: 22100 tons), with 1964 and 1971 as the peak years (35600 and 31500 tons, respectively). A drastic decline in the catches has occurred after 1972 with a provisional figure for 1975 of only 3400 tons or 15% of the $1960-72$ level. This decline is closely combined with a decline in effort seen in Section 24.
23.2.3 Nominal catches of cod at East Greenland and off Southwest Greenland as a whole (ICES Sub-area XIV and ICNAF Divisions 1E-1F), 1960-74

The cod catches in ICES Sub-area XIV and ICNAF Divisions IE-lF mentioned in the preceding sections are combined in Table 24. For the combined area the cod catches have fluctuated between 74 and 130 thousand tons in the period 1960-71, the mean for the period being 99 thousand tons. Peak years are 1963 and 1968, both with 130 thousand tons. A drastic decline is observed after 1971 , and the 1974 catch is only about 20 thousand tons or 20% of the 1960-71 level.
24. Effort
24.1 Data used

Both ICES and ICNAF request countries to report fishing effort. For East Greenland (ICES Sub-area XIV) the effort figures as set up in Table 26 were obtained from the German research reports to ICNAF (by A Meyer). This effort is an effort directed partly to cod and partly to redfish or to both species combined. The catch per unit effort as a measure of cod abundance must, therefore, be taken with great reservation.

For ICNAF Divisions 1E-lF no attempt was made by the Working Group to set up a table of an overall effort for the area. Such an exercise would, of course, also contain the same problem of allocation as with the nominal catches.
24.2 Trends in effort

Due to the complexity of the fisheries at West Greenland and the problem of allocating unspecified catches no attempt has been made recently to obtain effort-unit figures for ICNAF Divisions lE-lF separately.
As explained in para. 24.1 some effort figures can be given for the fisheries off East Greenland (Table 26). These clearly demonstrate a decrease of effort after 1972, so that the level of effort by 1974 is $1 / 4-1 / 5$ of the high level in the mid-1960s. The catch-per-unit of effort figures vary considerably, being highest in 1971. The c.p.u.e. level in 1974 falls within the same range as the figures in the 1960s. However, due to the mixed nature of the fisheries, no definite conclusions are drawn from these c.p.u.e. figures, nor has it been considered appropriate to use these figures to obtain an overall effort for ICES Sub-area XIV and ICNAF Divisions $1 F-1 F$ combined. However, the low catch figures for Divisions $1 E-1 F$ in recent years do suggest that effort has declined also in these Divisions and hence also in the combined Sub-area XIV-Divisions 1E-1F area.
25. Catch in Numbers by Age Groups
25.1 ICNAF Divisions IE-1F

The numbers by age groups for the cod catches in ICNAF Divisions 1E-lF for the period 1960-75 are given in Table 27. These figures are taken from ICNAF Res.Doc. $75 / 31$ (by Sv. Aa. Horsted) for the years 1965-73, and for the years 1974-75 they are preliminary estimated by Horsted. For the years prior to 1969 (including 1960-64) the basic material is submittedby the Federal Republic of Germany (Schumacher and Meyer, unpubl.), and adjusted to the total catches for Divisions lE-lF as they occur after allocation of unspecified West Greenland catches (see para.23.1). The German method of raising samples to catches has generally been based on the observed weight of the total sample,
whereas Horsted's figures are based on samples for which a total weight has been calculated by applying mean weights for each age group. This latter method may lead to more heavily biassed figures than the former, but the method has been the only possible one since few samples with observed total weight exist for recent years. For the years 1974 and 1975 it has even been necessary to use samples from catches containing a mixture of fish from various divisions. The figures given for 1974 and 1975 are, therefore, very uncertain, although the 1968 year class has the expected very strong predominance.

East_Greenland_(ICES Sub-area_XIV)
The numbers by age group for the cod catches off East Greenland as given in Table 28 are based on figures for the German (Fed.Rep. of) catches made available to the Working Group by A Meyer. The raising of numbers in samples to numbers in catches is based on observed total weight of the samples. The figures supplied by A Meyer have been raised to total Sub-area XIV cod catches by the Working Group. Since German catches account for the major part of the Sub-area XIV catch, the possible bias by this latter raising seems to be very small. However, due to the wide statistical area, it is not clear whether great variation in catch composition exists between the northern part (the Dohrn Bank) and the southern part (close to Cape Farewell) nor to judge whether the whole area, if fished, is covered by the sampling.
$2 \mathfrak{2 f} 3$ ICES Sub-area_XIV plus_ICNAF Divisions_1E-1F
The numbers by age group for the overall southwest and East Greenland cod catches as given in Table 29 are simple sums of figures given in Tables 27 and 28.

26. Mean Weight by Age

The mean weight by age for Greenland cod is known to vary considerably betwee years and between year classes. In the present analyses the following values taken from ICNAF Res.Doc. $75 / 31$ were used:

Age	Mean Weight (kg)
3	0.65
4	0.99
5	1.68
6	2.77
7	3.84
8	4.72
9	5.34
10	5.34
11	5.48
12	5.39
13	8.70
$14+$	10.00

These figures were checked on the only sample available from Division 1E at present (a length sample from U.K. supplied to the ICNAF Assessment Meeting, April 1976 and broken down in age groups by means of a Danish age/length key for Divisions lC-1E, 1975). The same sample was converted to weight by means of German length/weight data (A Meyer, ICNAF Res. Doc. $66 / 18$). This exercise showed that the weight figures as given above correspond reasonably well both with the weight obtained by German data and with the actual observed total weight for the U.K. sample.
29.

Natural Mortality and Emigration
Natural mortality has been taken as $M=0.20$, the value used throughout all previous analyses of Greenland cod. However, apart from this mortality (and the fishing mortality) the VPA analyses should also take into account the "mortality" due to emigration. The emigration has been adopted as being 25% annually for mature cod (see para. 30.2). This corresponds to a coefficient (instantaneous rate) of 0.29 . Taking the age of emigration as knife-edge at age 7, the VPA analysis for the combined stocks in ICES Subarea XIV and ICNAF Divisions LE-1F has been made with a value of $M=0.20$ for age groups to and including six years. From seven years onwards the M value is taken as 0.49 , treating emigration as a component of the natural mortality.

Input Data to Virtual Population Analyses of Cod at Greenland
The basic input figures for VPA analyses are the catch in numbers and the mortality rates. Nominal catches and catch by numbers have already been considered in the previous Sections, and so have the natural mortality and the emigration parameter. For estimating forecasts,figures for mean weight by age are needed. These are also dealt with above.
The most critical input is the terminal figure for fishing mortality rate, F. In the analysis carried out it has been assumed that F in 1975 is the same for East Greenland as for ICNAF Divisions lE-1F. At the same time it has been taken into account that catches and effort in 1975 are very much lower than in the years prior to 1974. The actual 1975 catches seem to be close to those predicted (for Divisions lE-lF) in forecasts by an F value of 0.20 (ICNAF Res.Doc. 75/31). A value of 0.22 was then chosen for the analyses, but other values of the same order might as well have been considered.

Results of the VPA and Predictions of Stock Size and Catches for 1976-78
The VPA analyses (Tables 30 and 31) carried out for the ICES Sub-area XIV and ICNAF Divisions lE-IF combined show, as expected from the fisheries themselves, that there has been an overall decline in the stock over the last five years. Taking only the spawning stock, i.e. cod of age 7 and older, the numbers (in millions) at the beginning of each year are as follows:

Year	1960	1961	1962	1963	1964	1965
Nos. $\mathrm{x} 10^{-6}$	161.2	101.8	65.3	91.5	89.4	70.3
Year	1966	1967	1968	1969	1970	1971
Nos. $\times 10^{-6}$	39.7	45.2	82.0	76.0	96.4	64.7
Year	1972	1973	1974	1975		
Nos. $x 10^{-6}$	28.3	13.2	7.3	21.4		

This reflects the very poor general recruitment to the stock since year class 1963 recruited. The only year class of average strength since then is the 1968 year class. The recruitment of this year class to the spawning stock may have led to some increase in spawning stock in 1975. If no good year classes enter the stock in the next few years, a further decline is to be expected.

There seems to be evidence that the 1973 year class is of some importance. Rather arbitrarily it is here judged to be somewhat stronger than other year classes since 1963 and about $1 / 3$ of the 1963 year class, ioe. in round
figures about 70 million individuals by the age of 3 . The following 1974 year class has not shown any aigns of importance and is set at 10 million by age 3 .
On the basis of this a prediction of stock size and catches has been made for the area considered for 1976-77, using values of F corresponding to the input F in 1975 in the VPA $(F=0.22)$ and $F_{0.1}=0.45$ (ICNAF Res.Doc. $75 / 31$). The results are set out in Table 32.
The predictions show that for both F values a slight improvement in the total stock could be expected from 1975 to 1978. However, this improvement is mainly due to the above-mentioned optimistic judgment of the incoming 1973 year class. Figures in brackets in the table reflect that part of the predicted catches and stock which is dependent on the incoming year classes 1973 and 1974. If the 1973 year class is overestimated, catches and stock size will remain at the present very low level.
E. INTERRELATIONSHIP BETWEEN THE COD STOCKS AT ICELAND AND AT GREENLAND

30. Introduction

Throughout the period when investigations of cod in Greenland waters have been made, i.e. since the 1920s, it has been known that part of the stock of cod at West Greenland migrates to East Greenland and Iceland when reaching maturity. This has been demonstrated mainly by tagging experiments at Greenland, but also other studies confirm this migration.
As would be expected the migration to East Greenland and Iceland has been most pronounced for cod tagged in the southernmost part of West Greenland, i.e. ICNAF Divisions $1 E$ and 1F. Tagging off East Greenland has shown a considerable migration from these waters to Iceland but only a small-scale migration to West Greenland. Tagging at Iceland has revealed a negligible number of recaptures at Greenland thus confirming that once the cod have migrated from Greenland to Iceland they will remain at Iceland.
However, the interrelationship between the stocks is not only a matter of adult cod migrating and mixing but also a matter of recruitment of young cod to one area originating from spawning in another area. As far as this question is concerned, there seems to be some feed-back of fry from East Greenland to West Greenland and from Iceland to East Greenland, and possibly even to West Greenland.
These two separate aspects of the interrelationship between cod at Greenland and Iceland are described in further details in the following.
31. Migration of Adult Fish from West to East Greenland and to Iceland

Although it has been known that cod from Greenland waters contribute to the fisheries at Iceland no quantitative estimates of this contribution have been made until the North-Western Working Group tried to carry out such analyses at its last meeting in 1970. At that meeting the Working Group based its analyses partly on tagging experiments and partly on analyses of stock size and composition of stock and catches at Iceland and Greenland.

Estimates_from_tagging_experiments
Based upon tagging experiments at Greenland the Working Group in 1970 concluded that the actual overall proportion of mature fish at East Greenland and in the southern part of West Greenland (ICNAF Divisions 1E-1F) emigrating to Iceland was about 25% per year.
Since then only few fish have been tagged at Greenland. Danish tagging experiments at West Greenland in the years 1966-72 were presented to the Working Group at its present meeting. They reconfirmed that from the
southern part of the area (Divisions lE-lF) revealed several recaptures at East Greenland and at Iceland. Considesing only fish that were 70 cm or bigger at the time of tagging, the total recaptures from the 1966-72 experiments in Divisions $1 \mathrm{E}-1 \mathrm{~F}$ amount to 7.6% (25 recaptures, 329 fish tagged). 44% of the recaptures came from East Greenland or Iceland. The overall recapture rate from these experiments is lower than in previous experiments, but the decrease is mainly due to a lower recapture rate at West Greenland than in previous experiments, although also the recapture rate at Iceland and at East Greenland has decreased somewhat. However, the material is so limited and fishermen's reporting rate of tags so uncertain that the Working Group did not find itself in a position to change the conclusions from the meeting in 1970.

From Icelandic tagging experiments at East Greenland in the years 1971-74, only 2% has been returned, probably due to a high tagging mortality. $2 / 3$ of the recaptures came from East Greenland and $1 / 3$ from Icelandic waterso Again, these experiments do not allow any revision of former conclusions.
31.2 Estimate of emigrants from Greenland to Iceland

Since no new information on the number of cod of age 7 and older emigrating from Greenland to Iceland is available, the percentage of emigrants (25% annually) given in the previous report of the Working Group was used. This figure corresponds to an instantaneous emigration rate of 0.29 , which was applied to the number of cod from age 7 and onwards in each year and age group derived from VPA (using the parameters outlined in Sections 27 and 28) for ICNAF Divisions $1 E-1 F$ and ICES Sub-area XIV combined. In estimating the number of cod emigrating from Greenland, F and M values have also been taken into account (see Section 27).

The annual contribution of Greenland cod to the Icelandic spawning stock (Table 33 and Figure 10) varies according to the size of the year classes and F values at Greenland, ranging from 34.7×106 cod in 1960 to 1.3×10^{6} in 1974. From 1971 onwards there was a steady decline of emigration from Greenland from 12.1×10^{6} in 1971 to 1.3×10^{6} in 1974 , when the very poor year classes 1965, 1966 and 1967 entered the spawning stock. In 1975, when the about average 1968 year class was expected to emigrate, the number increased slightly to 4.4×10^{6}. The average over the period 1960-69 of 7 year old fish ($8.0 \times 10^{6} \mathrm{fish}$) is of the same order as the estimate given in the previous report (7.3×10^{6}).
31.3 Some observations on the use of VPA for the Icelandic/Greenland cod stock The Group discussed the difficulties of obtaining valid estimates of F and stock size from VPA when dealing with two stocks with interchange between them.

A VPA using only catches made at Iceland would tend to overestimate stock sizes at Iceland, especially among the younger age groups. This is because these estimates might include a proportion of fish that had commenced life in Greenland waters. A VPA using only catches made at East Greenland might underestimate stock sizes at East Greenland if no account has been taken of fish that commenced life at East Greenland but were caught at Iceland. To take account of this, the effective value of M on the older age groups could be increased to take account of an instantaneous coefficient of emigration, and the result of a trial made in this way is given in Tables 30 and 31.
A VPA using catches from Iceland and East Greenland would be useful since this should provide estimates of total stock sizes but without any indication of how this should be distributed between the two areas.
For all the VPAs it was recognised that values of F were liable to be biassed. All assessments depending on VPA Fs were, therefore, regarded as provisional and subject to revisions.

It was recommended that further work be done on a simulation of the Iceland/Greenland situation with a view to obtaining better estimates of F, stock sizes and coefficient of emigration from Greenland to Iceland.
32. Recruitment to the West Greenland Stock of Cod Originating from East Greenland and Iceland
32.1 Distribution of cod at Greenland

The recruitment to the cod stock off West Greenland is dependent on fluctuations in the environment not only at West Greenland, but also at East Greenland and Iceland. These fluctuations in the environment lead to fluctuations in the strength of the cod year classes.
The distribution of cod at West Greenland depends on whether the year classes originate from West Greenland or from East Greenland-Iceland. A year class originating from West Greenland seems to come from the spawning area in the northern part of ICNAF Division 1E and Division 1D. The main nursery grounds are in ICNAF Divisions 1B-1D. Seasonal spawning/feeding migrations occur between various areas.
A year class originating from East Greenland-Iceland has a more southerly distribution at West Greenland than a West Greenland year class. A year class from East Greenland-Iceland is normally observed in ICNAF Divisions 1E and $1 F$ at an age of one year. They grow up in this area and at an age of 7-8 years old they begin to migrate from West Greenland to the spawning grounds in ICES Sub-area XIV and Division Va. Some migration back to West Greenland may occur from the southern part of East Greenland.
The following year classes which were and some of which still are important for the fishery originate from West Greenland: 1947, 1950, 1953, 1957, 1960, 1961 and 1968. Of East Greenland origin the following were important or relatively important for the fishery at West Greenland: 1945, 1956, 1958, 1961, 1962, 1963, 1964 and 1968. The 1956 and the 1961 year classes were the most important.

32.2 Distribution of cod eggs and larvae

The ICNAF NORWESTLANT Survey 1963 showed that cod eggs in April 1963 were distributed in a continuous belt from Iceland to East Greenland, along East Greenland, round Cape Farewell and over the banks at West Greenland. Concentrations of larvae were, however, only found in two areas. One at West Greenland (ICNAF Divisions 1B-1D) which is the normal area of distribution for cod larvae of West Greenland origin. The other concentration was found from Iceland to East Greenland over the ridge. Thus, the distribution of larvae was discupted into two parts compared to the more continuous distribution of the eggs.
If the occurrence of eggs in April 1963 reflects the general picture of distribution of eggs in April shortly after spawning, then the contribution of cod from East Greenland-Iceland to West Greenland may depend upon how successful the spawning is in the various areas off East Greenland and at Iceland, and of course upon the size of the spawning stock.
Icelandic investigations have shown that the incubation time for cod eggs off East Greenland is $20-30$ days. The speed of the East Greenland Current is known to be 4.5-9.5 nautical miles per day. Thus, eggs from the South East Greenland area can be transported to South West Greenland before hatching.
In 1963 no larvae were found at South West Greenland (Divisions $1 E$ and 1F). This indicates that there may have been a spawning failure in an area at
the West Greenland component of that year class contributed very little to the fishery, it seems likely to assume that these catches consisted of cod originating from the larvae concentrations found in July between Iceland and East Greenland.

The International 0-Group Surveys in the Iceland-East Greenland area in the years 1970-74 found no 0-group cod along East Greenland from $64^{\circ} \mathrm{N}$ to $60^{\circ} \mathrm{N}$. Only in the year of 1973 was a dense concentration of 0 -group cod found over the Dohrn Bank. This year class was found at West Greenland in ICNAF Division $1 F$ as 1 year old and also as 2 and 3 years old in Divisions 1E and 1D. These l-3 year old cod from the year class 1973 may have originated from the concentration over the Dohrn Bank like the year class 1963 did.

These observations indicate that in some years not only the spawning areas off East Greenland are important to the fishery at West Greenland, but also spawning grounds rather close to Iceland.

33.
 Management Problems for Cod at Greenland

Apart from the problems of adequate datà and parameters for analyses of the state of stocks and for forecasts of stocks and catches,management of the cod stocks round Greenland is faced with another problem.

The Working Group observed that a quota regulation is applied to the ICNAF part of the Greenland area. It is also observed that while for practical reasons the ICNAF Subarea 1 cod quota is not split up in areal sections, the analyses on which the scientific advice to ICNAF are based consider the stocks in Divisions 1A-1D and Divisions 1E-1F separately.

In recent years the ICNAF scientists have advised that due to the very low stock size and a possible danger of failure in recruitment due to low spawning stock size, fishing should be kept at the lowest practical level. In this context the scientists have also pointed out that the recruitment to West Greenland stocks is depending partly upon the spawning stock at East Greenliand.

The present report confirms that there is a strong interrelationship between cod in ICNAF Divisions $1 \mathrm{E}-1 F$ and cod at East Greenland and partly at Iceland. Although the migration of adult cod is mainly from West Greenland to East Greenland and to Iceland, the Working Group considers that the cod fisheries at West Greenland are depending to a certain degree on spawning stocks at East Greenland and possibly even at Iceland.

The Working Group also considers that for cod in ICNAF Divisions 1E-lF the interrelationship with the East Greenland cod is just as pronounced as the interrelationship with cod in Divisions lA-lD. It therefore seems proper to consider East and West Greenland as a unit management area. If a break down for management purposes is to be considered, it may be as proper to combine Divisions lE-IF with East Greenland (ICES Sub-area XIV) as with ICNAF Divisions 1A-1D.

Table 1. Nominal catch of Cod. TGES Diviaion Va (Iceland Grounda). In thousand tong. 1955-75 (Bulletin Statistique).

Species: COD Country	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	19.71	1972	1973	1974	1975*
Beigium	9.0	7.0	6.7	9.9	5.5	5.6	5.4	8.2	6.3	3.1	3.7	3.0	2.3	3.4	2.7	3.0	3.0	2.5	1.1	1.1	1.0
Denmarix	+																				
Faroe Isl.	18.7	16.2	20.9	17.9	7.7	11.8	10.6	8.7	6.3	6.9	5.2	3.4	2.6	4.3	2.6	4.3	8.6	11.1	24.2	12.1	9.6
France							0.1	0.2				0.1	0.4	0.1	0.1	1.9	1.5	-	-	0.2	-
Germany (Fed.Rep.) ${ }^{1)}$..	48.2	30.0	23.3	37.8	35.6	37.9	21.8	34.2	33.0	19.3	15.3	9.9	15.4	29.6	19.4	24.7	27.3	11.7	6.6	5.5	2.2
German.Dem.Rep. ${ }^{\text {2 }}$. ...							0.3	0.5	0.9	0.5	0.5	0.3	0.4	0.9	0.5	2.7	0.7	0.7			
Iceland	315.4	292.6	247.1	284.4	284.3	295.7	233.9	221.8	232.8	273.6	233.5	224.0	193.4	227.6	281.7	302.9	250.3	225.4	234.9	238.3	266.8
Netherlands			+				0.1	0.5	0.7	0.7	0.5	0.1			$+$						
Norway	7.1	4.6	8.2	6.8	5.5	3.4	4.2	4.7	3.5	2.7	0.4	0.5	0.2	0.3	0.4	0.4	0.3	0.6	0.1	0.2	0.1
Poland ${ }^{2}$)				+					0.2	0.1						2.6	0.3	0.2			
U.K. (England a Wales)	138.7	127.8	144.3	150.5	112.7	109.4	96.5	105.1	123.2	122.2	128.1	109.0	126.6	111.6	95.4	125.2	157.7	144.2	121.3	115.4	91.0
J.K.(Scotland)	1.0	2.5	1.4	1.2	1.3	1.2	2.1	3.1	3.2	4.6	6.8	4.8	3.6	2.8	4.0	5.3	4.1	3.0	1.0	2.1	1.6
サ.s.s.R.2) ${ }^{\text {a }}$ (.........											0.2	2.0	0.3	1.4	0.2	+	0.1	+			
Total	538.1	480.7	451.9	508.5	452.6	465.0	375.0	386.9	410.1	433.7	394.2	357.1	345.0	382.0	407.0	472.0	453.9	399.4	379.2	374.9	372.3
Bull. Stat. Total	536.8	482.2	453.0	510.5	454.2	465.0	375.6	386.4	409.4	434.5	393.6	357.4	344.0	379.5	405.2	470.8	453.0	398.5	379.9	375.0	

The national statistics used in the table (see footnotes 1 and 2) differ slightly from those given in Bulletin Statiatique.
The order of magnitude of these discrepancies is shown by comparison of the total catches at the bottom of the table.

* Provisional.

1) From national atatistics from Bundeaforschungsanstalt f. Fischerei, Hamburg.
2) From netional statistics.
$+\quad=$ less than 0.1 thousand tons.
Note: Due to a mistake during the preparation of the table minor discrepancies (less than 2 thousand tons) occur between
the total given in the table and the catch data used in the assessment for the years 1966 (2000 tons), 1967 (300 tons),
1968 (1400 tons), 1969 (200 tons) and 1971 (100 tons).
Effort and catch per unit of effort 1970－75．

Year	Hours trawling			Tons／hours trawling	Effort raised to total catches（non－spawning）
	Steam	Motor	Total		
1970	59159	140365	199524	0.628	491222 （1．00）
1971	89237	211430	300667	0.525	627835 （1．28）
1972	98937	220673	319610	0.451	606184 （1．23）
1973	82913	194971	277884	0.437	594369 （1．21）
1974	68770	164612	233382	0.495	545297 （1．11）
1975			212608	0.428	640889 （1．30）

c）Icelandic multigear boats（less than

	ッ ッ．．mの
H	

Table 2 (Continued)

Year	Hours trawling	Cod catch (1 000 tons)	Tons/hours trawling
1970	1266	0.4	0.326
1971	13942	6.6	0.472
1972	18939	8.1	0.431
1973	57302	25.5	0.445
1974	111814	51.5	0.461
1975	146866	$\left.(78.6)^{m}\right)$	$\left.(0.535)^{m}\right)$

${ }^{\text {ㅍ) }}$ Splitting of catch between big trawler and

Year	Days absent	Cod catch (1 000 tons)	Tons/days absent
1970	20460	132.5	6.48
1971	22834	not available	
1972	27801	114.3	4.11
1973	30451	119.9	3.94
1974	28817	99.9	3.47
1975		94.4	

Table 3. Iceland Cod.

Table 4. Cod.
Division Va. Mean weight at age. Average of the period 1970-74.

Age	Raglish data	Icelandic data		Stock
		Spawning		
1		0.22		0.22
2	0.69	0.78	0.43	0.64
3	0.91	1.19	1.30	1.12
4	1.32	1.80	2.78	1.93
5	1.84	2.63	4.51	2.92
6	2.73	3.47	5.40	3.80
7	3.86	4.12	6.17	4.65
8	4.69	4.55	6.60	5.25
9	4.96	4.82	6.78	5.48
10	5.55	5.33	7.30	6.01
11	6.61	6.72	8.37	7.18
12	9.69	7.31	9.68	8.93
13	11.41	9.29	12.82	11.14
14	15.40	12.11	18.10	15.14
15^{+}	13.41	11.17	23.95	15.90

Length/weight regression parameters: $l_{n} w=a l+b$

Non-spawning:	Ragland $:$	3.000	11.6183
n	Iceland	2.551	9.7361
Spawning	Iceland	3.072	11.8913

Table 5.a. Cod at Iceland.

Age/Year	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
1	-	-	0.41	-	-	-	-	0.22	-	-	-
2	1.18	1.06	1.29	0.75	0.69	0.58	0.65	0.63	1.32	0.74	1.00
3	1.59	1.61	1.64	1.40	1.28	1.04	1.14	1.12	1.40	1.26	1.32
4	2.62	2.33	2.36	1.57	1.92	1.60	1.80	1.81	1.83	1.94	1.87
5	2.98	3.34	3.16	2.56	2.66	2.59	2.54	2.59	2.79	2.62	2.74
6	3.94	4.10	4.11	3.28	3.45	3.47	3.49	3.36	3.40	3.61	3.48
7	4.63	5.09	4.94	4.25	4.20	4.10	4.16	3.99	4.20	4.14	4.49
8	5.31	5.77	6.21	4.37	4.53	4.31	4.15	4.54	4.67	5.09	4.92
9	5.55	5.18	6.04	6.39	5.41	4.78	4.41	4.85	5.07	5.03	5.32
10	7.07	5.57	7.10	6.77	5.27	6.45	4.93	4.59	5.13	5.56	6.79
11	8.39	6.67	6.81	7.74	6.38	9.09	7.79	5.47	5.34	5.89	7.04
12	7.58	8.94	9.70	7.21	9.82	9.44	8.62	7.27	5.37	5.87	7.77
13	13.39	8.43	9.22	11.41	10.40	6.71	9.79	11.90	11.88	6.16	8.61
14	10.86	9.92	12.09	10.32	9.51	-	13.04	-	-	11.17	-
$15+$	11.67	11.56	13.66	16.26	18.49	-	11.17	-	-	-	15.20

\footnotetext{
Table 5.b. Cod at Iceland.

$\stackrel{n}{\underset{\sim}{\boldsymbol{n}}}$	
$\xrightarrow{\text { J }}$	
$\underset{\sim}{\sim}$	
$\stackrel{\sim}{\sim}$	
$\begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	- $\dot{\sim}$
$\underset{\substack{\circ \\ \underset{\sim}{\prime} \\ \hline}}{ }$	
a a 9 -1	
$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \underset{\sim}{1} \end{aligned}$	
$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \end{aligned}$	
$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \underset{\sim}{-} \end{aligned}$	
+	

Table 6. Cod at Iceland. VPA input values of P for 1975

	(A)	(B)	(c)	(D)	(E)
Age	F 1970 from prelimin- ary run	$\begin{gathered} \text { Adjusted } \mathbf{F} \\ 1970 \end{gathered}$	(B) $\times 1.2$	(B) $\times 1.3$	(B) xl .4
1	0.00	0.001	0.001	0.001	0.001
2	0.00	0.01	0.01	0.01	0.01
3	0.06	0.10	0.12	0.13	0.14
4	0.31	0.31	0.37	0.40	0.43
5	0.36	0.36	0.43	0.47	0.50
6	0.38	0.38	0.46	0.49	0.53
7	0.26	0.40	0.48	0.52	0.56
8	0.50	0.50	0.60	0.65	0.70
9	1.00				
10	0.55 0.67		0.90	0.98	1.05
11	0.67	\} 0.75			
12	0.83 0.73	J			

Table 7. Cod at Iceland. Derived values of F for 1970 (see Table 6).

Age	(C)	(D)	(E)
3	0.06	0.06	0.06
4	0.31	0.31	0.32
5	0.36	0.36	0.36
6	0.38	0.38	0.38
7	0.26	0.26	0.26
8	0.50	0.50	0.51
9	1.00	1.00	1.00
10	0.55	0.56	0.56
11	0.68	0.68	0.68
12	0.84	0.84	0.84
13	0.77	0.75	0.82

Table 8. Iceland Cod.
Estimates of fishing mortality coefficients for 1955-75 calculated by VPA for age and year.

Age	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964
1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00	0.01
3	0.03	0.04	0.10	0.12	0.08	0.10	0.09	0.10	0.11	0.06
4	0.15	0.17	0.18	0.30	0.30	0.16	0.22	0.25	0.36	0.30
5	0.17	0.26	0.27	0.18	0.38	0.33	0.14	0.35	0.32	0.46
6	0.26	0.17	0.26	0.29	0.10	0.35	0.36	0.16	0.35	0.25
7	0.39	0.24	0.13	0.37	0.19	0.19	0.39	0.44	0.28	0.40
8	0.29	0.32	0.34	0.22	0.31	0.37	0.21	0.40	0.59	0.48
9	0.30	0.36	0.48	0.34	0.27	0.49	0.41	0.42	0.47	0.94
10	0.40	0.16	0.42	0.51	0.65	0.50	0.43	0.58	0.68	0.66
11	0.42	0.65	0.15	0.57	0.51	0.84	0.52	0.53	0.73	1.04
12	0.29	0.46	0.97	2.03	0.94	1.38	0.78	0.52	0.56	1.23
13	0.65	0.68	0.30	0.36	0.37	0.57	0.45	0.60	0.49	0.60
14	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75

$\stackrel{\underset{\sim}{\boldsymbol{\sim}}}{\stackrel{\sim}{\sim}}$	
$\xrightarrow{ \pm}$	
$\stackrel{m}{\stackrel{m}{o}}$	
$\stackrel{N}{N}$	
$\stackrel{-1}{\text { - }}$	
$\stackrel{\text { 익 }}{\text { - }}$	
$\begin{aligned} & \text { ò } \\ & \text { ò } \end{aligned}$	
$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	
$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \underset{\sim}{-} \end{aligned}$	
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{7} \end{aligned}$	
$\begin{aligned} & \stackrel{n}{\circ} \\ & \stackrel{\sim}{\sim} \end{aligned}$	- $\dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$
$\begin{aligned} & 0 \\ & 8 \\ & 8 \end{aligned}$	

Table 2．Iceland Cod．
Estimates of atock size at beginning of year 1955－75 calculated by VPA（thousands of fish）．

－	 ェッベन
N	
$\xrightarrow{0}$	
$\underset{\sim}{-1}$	
$\begin{aligned} & \circ \\ & \stackrel{\circ}{2} \\ & \underset{\sim}{2} \end{aligned}$	 NN～NH
$\begin{aligned} & \text { on } \\ & \text { Non } \end{aligned}$	 ～～
$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	 NウNMO
$\underset{\sim}{\text { in }}$	
$\stackrel{\circ}{\stackrel{n}{7}} \underset{\sim}{2}$	
$\begin{aligned} & \text { Nn } \\ & \underset{\sim}{n} \end{aligned}$	 N N H．
\％	

$\underset{\sim}{\sim}$	
－	 욱그
$\underset{\sim}{\sim}$	 트구욱
$\underset{\sim}{N}$	
$\underset{\sim}{\underset{\sim}{A}}$	 ダーデオ
웅	呙才 N～नNN
$\begin{aligned} & \text { ờ } \\ & \underset{\sim}{\circ} \end{aligned}$	 N～Nウの
$\begin{aligned} & \infty \\ & \underset{\sim}{\circ} \\ & \underset{\sim}{\circ} \end{aligned}$	 あた№mかかOMす ※～N゙N゙
$\underset{\sim}{\underset{\sim}{\circ}}$	
$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \underset{\sim}{2} \end{aligned}$	 수Nำ～
$\begin{aligned} & \stackrel{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{-1} \end{aligned}$	응 No ios fo
－	

Table 10. Cod at Iceland. Total stock biomass and spawning stock biomass (thousands of tons).

Year	Total stock biomass age groups 3 and older	Spawning stock biomass age groups 7 and older
1955	2615	924
1956	2429	952
1957	2208	1138
1958	2089	1036
1959	2006	783
1960	1868	748
1961	1745	587
1962	1635	550
1963	1505	694
1964	1480	543
1965	1474	422
1966	1592	288
1967	1846	237
1968	1959	487
1969	1994	551
1970	1899	673
1971	1677	637
1972	1371	462
1973	(1 319) ${ }^{\text {3/ }}$)	337
1974	$(1183)^{31}$)	(244) ${ }^{\text {m) }}$
1975		(231) ${ }^{3}$

3) Values sensitive to VPA input values of F for 1975.

B 9

Table 11. Fetimated year class strengths of cod from the three VPA's (3 years old, number in 10^{-6}).

Year Class	Iceland	E. Greenland + W. Greenland $1 E \& F$	E. Greenland + W. Greenland 1 E \& F + Iceland
1952	146		
1953	202		
1954	177		
1955	259		
1956	305		
1957	152	- 81	232
1958	189	71	260
1959	142	16	158
1960	162	53	215
1961	293	151	444
1962	258	78	336
1963	290	135	425
1964	340	42	382
1965	176	12	188
1966	259	13	275
1967	190	8	200
1968	188	6	220
1969	141	4	151
1970	303	13	342

Average 1952 - 1970 year classes 220

- 42
x) Catches reported as Division INK (West Greenland unspecified) are given two lines above. Parts of these catches
have been allocated (by the Greenland Fisheries Institute) to Divisions IE-IF as given in the last line.
The countries for which the catch or part of the catch was reported as Division INK are marked with an asterisk.

COD	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
Faroe Islands	13.0ㅍ)	16.3 ${ }^{\text {\# }}$	28.5*)	22.7*)	17.7*)	19.3*)	22.6*)	20.5 ${ }^{\text {\% }}$)	12.7*)	5.1*)	2.7*)	6.4*)	$2.8{ }^{\text {\% }}$)	2.1*)	2.0
France	0.1	0.2	0.2	0.7	1.0	0.9	2.0	1.3	7.7	3.2	0.5	0.5	0.3		
Germany, Fed.Rep.	7.7	20.4	31.1	44.9	27.9	20.5	21.7	32.3	55.6	38.4	31.0	26.2	6.8	4.0	0.8
German Dem.Rep.	+			2.2	1.7	0.5x)	1.8	1.1	4.7	1.7	3.4*)	0.1			
Greenland	10.2	15.9	17.2	12.1	7.2	7.9	7.1	8.6	10.0	8.2 ${ }^{\text {x }}$)	$8.6^{\text {m }}$	$7.1^{\text {x }}$	6.9*)	6.0	7.6
Iceland	2.8*)	3.6*)	0.5	1.7	1.2	0.7	0.6	0.1							
Norway	14.3 ${ }^{\text {F }}$	13.7*)	3.4*)	9.2*)	11.6 ${ }^{\text {\% }}$	8.2 ${ }^{\text {² }}$	10.2 ${ }^{\text {m }}$	13.7 ${ }^{\text {F) }}$	10.7*)	$5.8{ }^{\text {x }}$	$1.6{ }^{\text {² }}$	1.53)	$6.3^{*)}$	4.2*)	1.8
Poland	+		0.3	0.2		+	0.1	+	+	0.1					
Portugal	5.4	0.4	2.6	1.5		+	0.2	+	6.4	5.8	1.4	+	+	+	0.4
Spain	0.1	+	0.4	0.1	0.2		+	3.0	1.0	2.2	1.0	0.6	0.6	0.6	+
$\text { J.K. } \underset{\text { Wales) }}{(\text { England \& }}$	8.1	2.7	6.6	10.7	13.4	6.1	11.2	5.2	4.7		2.9	1.4	0.4	0.5	0.8
USSR	0.1			1.0					0.5		0.3			+	
Total	61.7	73.1	90.8	106.9	81.9	64.1	77.7	85.8	114.0	70.5	53.5	43.8	24.0	17.4	13.4
Division INK ${ }^{\text {x }}$)	76.2	88.0	115.9	99.7	84.3	99.2	95.1	95.9	68.6	35.9	23.0	26.4	20.1	1.1	0
IE-IF Allocated ${ }^{\text {x }}$)	25.2	26.5	31.0	29.8	25.9	26.1	32.2	30.9	20.3	10.8	8.2	9.2	7.3	0.7	0

- 43 -
Table 23. Nominal catch of Cod.

COD	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975 ${ }^{\text {1) }}$
Faroe Islands	0.4	1.2											0.9	0.2	0.7	0.3
Germany, Fed.Rep.	19.1	15.0	14.3	13.9	30.6	11.0	7.8	12.1	8.3	12.6	13.9	25.6	21.6	9.3	2.3	1.5
German Dem.Rep.														+	+	0.3
Greenland	1.6	1.2	0.9	0.9	1.1	0.9	0.9	0.7	0.6	0.6	0.5	0.5	0.3	0.2	+	0.2
Iceland	2.5	1.4	0.3	1.8	2.9	4.7	4.0	10.5	6.7	4.5	5.5	4.6	3.2	1.4	3.0	0.8
Poland											0.8	0.4	0.3	+	+	+
U.K.	0.3	0.9	1.8	0.8	1.0	0.9	0.2	1.4	+		0.1	+	0.2	0.7	0.5	0.4
USSR				5.7				+		+	+	0.3	0.1			
Total	23.9	19.7	17.3	23.1	35.6	17.5	12.9	24.7	15.7	17.8	20.9	31.5	26.6	11.8	6.6	3.4

1) Preliminary figures based on verbal information by the Working Group.

COD	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
Faroe Islands	13.4*)	17.5*)	28.5 \%	$22.7^{\text {²) }}$	17.7 ${ }^{\text {\% }}$)	19.3 ${ }^{\text {² }}$	$22.6^{\text { }}$	$20.5^{\text {²) }}$	12.7^{*})	5.1 ${ }^{\text {²) }}$	$2.7{ }^{\text {\# }}$	$6.4^{\text {F) }}$	3.7	2.3	2.7
France	0.1	0.2	0.2	0.7	1.0	0.9	2.0	1.3	7.7	3.2	0.5	0.5	0.3		
Germany, Fed.Rep.	26.8	35.4	45.4	58.8	58.5	31.5	29.5	44.4	63.9	51.0	44.9	51.8	28.4	13.3	3.1
German Dem.Rep.	+			2.2	1.7	$0.5^{\text {F) }}$	1.8	1.1	4.7	1.7	3.4*)	0.1		+	+
Greenland	11.8	17.1	18.1	13.0	8.3	8.8	8.0	9.3	10.6	8.8 ${ }^{\text {F }}$)	9.1*)	7.6^{*}	7.2*)	6.2	7.6
Iceland	$5.3^{\text {²) }}$	5.0*)	0.8	3.5	4.1	5.4	4.6	10.6	6.7	4.5	5.5	4.6	3.2	1.4	3.0
Norway	14.3	13.7 \%	3.43)	9.2*)	11.6*)	$8.2^{\text {\% }}$	10.2*)	13.7 ${ }^{\text {F) }}$	10.7*)	$5.8{ }^{\text {x }}$)	$1.6^{\text {\% }}$	1.5*)	$6.3{ }^{\text {²) }}$	4.23)	1.8
										0.1	0.8	0.4	0.3	+	+
Poland	+		0.3	0.2		+	0.1	+	+	0.1	0.0	0.4	0.3		
Portugal	5.4	0.4	2.6	1.5		+	0.2	+	6.4	5.8	1.4	+	+	+	0.4
Spain	0.1	+	0.4	0.1	0.2		+	3.0	1.0	2.2	1.0	0.6	0.6	0.6	$+$
U.K.	8.4	3.6	8.4	11.	14.4	7.0	11.4	6.6	4.7		3.0	1.4	0.6	1.2	1.3
USSR	0.1			6.7				+	0.5	+	0.3	0.3	0.1	$+$	
Total	85.6	92.8	108.1	130.0	117.5	81.6	90.6	110.5	129.7	88.3	74.4	75.3	50.6	29.2	20.0
Division INK ${ }^{\text {a }}$	76.2	88.0	115.9	99.7	84.3	99.2	95.1	95.9	68.6	35.9	23.0	26.4	20.1	1.1	0
IE-IF Allocated ${ }^{\text {x }}$)	25.2	26.5	31.0	29.8	25.9	26.1	32.2	30.9	20.3	10.8	8.2	9.2	7.3	0.7	0

[^0]Table 25. Nominal catches of Cod in ICNAF Divisions IE-IF compared to
the total catch of Cod in ICNAF Sub-Area I.

Year	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974
Sub-Area I (tons x 10^{-3})	243	345	451	406	350	360	366	430	394	215	113	121	111	63	48
Divisions IF-IF (tons x 10	61.7	73.1	90.8	106.9	81.9	64.1	77.7	85.8	114.0	70.5	53.5	43.8	24.0	17.4	13.4
Divisions IE-IF as of Sub-Area 1	25.4	21.2	20.1	26.3	23.4	17.8	21.2	20.0	28.9	32.8	47.3	36.2	21.6	27.6	27.9

Table 26. Cod. East Greenland. \quad Estimates of total effort (Germany, Fed.Rep. of days fished used as unit).

Year	Germany, Fed.Rep; catch	Germany, Fed.Rep effort $)$	Germany, Fed.Rep. c.p.u.e.	Total catch	Total effort
1962	14299	1660	8.61	17295	2008
1963	13877	2182	6.36	23057	3625
1964	30623	3287	9.32	35577	3819
1965	10965	2734	4.01	17497	4363
1966	7786	1827	4.26	12870	3020
1967	12117	2157	5.62	24732	4403
1968	8323	1361	6.12	15701	2567
1969	12635	2164	5.84	17771	3044
1970	13930	1532	9.09	20907	2299
1971	25644	1737	14.8	31516	2135
1972	21592	1732	12.5	26629	2136
1973	9262	931	9.95	11752	1181
1974	2309	312	7.40	6553	885
1975 c $)$	1526			3435	

a) Germany, Federal Republic of, research reports to ICNAF. b) Bulletin Statistique Sub-Area XIV.

Table 27. Cod. ICNAF Divisions IE-IF 1960-75. Catch in numbers per age group (1 000 fish).

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
3	-	11	435	33	77	-	1180	49	8	-
4	2214	283	2022	534	562	2447	1996	1070	994	142
5	798	7745	4879	7710	1061	5336	19836	3211	10713	3167
6	935	1860	11631	8201	8239	1889	4597	14391	9972	15355
7	5233	1343	1415	11852	5550	5110	1588	5800	11520	6595
8	1541	4741	1291	912	4823	3965	3018	583	2236	4662
9	752	945	2676	248	542	1662	2232	369	182	731
10	1469	604	475	996	245	223	707	917	123	43
11	220	1203	308	178	733	158	79	55	314	75
12	394	129	737	178	81	552	56	28	23	146
13	1425	245	47	443	48	22	186	36	5	27
14+	712	1220	1303	751	256	129	128	107	56	4

	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969
Total	15693	$20 \quad 329$	27219	32036	22217	21493	35603	26616	36146	30947
corresponding catch (tons) x)	61705	73086	90789	106882	81942	64137	77661	85751	114001	70476
$\frac{w}{w}(\mathrm{~kg})$	3.93	3.60	3.34	3.34	3.69	2.98	2.18	3.22	3.15	2.28

Age	1970	1971	1972	1973	1974	$1975^{\text {xx }}$)
3	-	-	1	4	56	59
4	171	66	2944	60	145	304
5	1496	1118	952	5133	235	531
6	3323	2064	2218	980	2664	184
7	8763	3274	737	1005	206	2587
8	2989	6054	1482	254	240	160
9	1874	1266	1611	742	105	54
10	647	657	293	373	107	27
11	88	207	173	63	205	21
12	33	10	60	36	128	7
13	97	24	4	10	53	3
14+	27	44	26	10	16	3

	1970	1971	1972	1973	1974	1975
$\begin{aligned} & \text { Total } \\ & \text { corresponding } \\ & \text { catch } \frac{(\text { tons })}{W}(\mathrm{~kg}) \end{aligned}$	$\begin{array}{cc}19 & 508 \\ 53 & 530 \\ 2.74\end{array}$	$\begin{gathered} 14784 \\ 43837 \\ 2.97 \end{gathered}$	$\begin{gathered} 10501 \\ 23970 \\ 2.28 \end{gathered}$	$\begin{array}{r} 8670 \\ 17438 \\ 2.01 \end{array}$	$\begin{array}{r} 4160 \\ 13447 \\ 3.23 \end{array}$	$\begin{array}{r} 3940 \\ 11300 \\ 2.87 \end{array}$

x) Including estimates of catches reported as Division INK.
xx) Including estimates of catches for countries other than Germany, Fed. Rep. of (4 652 tons), U.K. (92) and Denmark (G) (3 186) and partly using samples
C 2 from Divisions north of Divisions IE-IF. 1975 sampling very poor.
Table 28. Cod. East Greenland. \quad ICES Sub-Area XIV 1960-1975. Catch in numbers per age group (1 000 fish).

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	-	23	4	-	1	-	28	-	-	-	-	-	-	4	4	25
4	78	87	64	61	26	131	21	145	104	31	66	25	27	25	63	25
5	144	240	113	419	108	35	470	302	630	252	76	171	85	197	22	149
6	255	203	974	743	933	91	89	2346	502	849	500	159	254	126	488	38
7	1321	215	344	2555	2281	879	137	564	2505	770	1539	1051	295	250	176	344
8	525	1080	151	419	3682	661	1071	210	238	2103	1060	3785	1299	82	185	68
9	475	377	1050	70	383	1484	359	1292	62	170	1715	1580	3184	710	52	36
10	1636	244	298	648	64	59	418	492	144	38	237	1326	818	959	329	9
11	409	719	132	154	443	27	23	371	69	82	32	171	470	222	259	29
12	60	184	362	96	74	139	3	37	27	68	63	19	136	72	65	23
13	487	64	60	190	35	29	27	17	5	24	48	4	26	19	11	7
14	16	192	15	23	146	41	18	49	10	7	- 16	9	22	-	-	2
15	83	23	143	12	31	80	2	2	9	10	2	5	24	-	-	
16	-	76	-	72	8	1	5	2	-	10	5		7	3	2	
17	-	-	64	12	102	2	2	16	-	1	3			1		
18	39	-		18	-	37	-	-	4	-	-			-		
19		37			29	1	-	-	-	3	-			3		
≥ 20						16	9	12	2	5	1					
Total	5528	3764	3774	5491	8346	3713	2682	5857	4311	4423	5363	8305	6647	2673	1656	755
Corresponding catch (tons)	23914	18597	17295	23057	35577	17497	12870	24732	15701	17771	20907	31516	26629	11752	6553	3435

Table 29. Cod. ${ }^{\text {ICES Sub-Area }}$ XIV plus ICNAF Divisions IE-IF 1960-1975. Catch in numbers per age group (1 000 fiah).																
Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975 ${ }^{\text {x }}$
3		34	439	33	78		1208	49	8				1	8	60	84
4	2292	370	2086	595	588	2578	2017	1215	1098	173	237	91	2971	85	208	329
5	942	7985	4992	8129	1169	5371	20306	3513	11343	3419	1572	1289	1037	5330	257	680
6	1190	2063	12605	8944	9172	1980	4686	16737	10474	16204	3823	2223	2472	1106	3152	222
7	6554	1558	1759	14407	7831	5989	1725	6364	14025	7365	10302	4325	1032	1255	382	2931
8	2066	5821	1442	1331	8505	4626	4089	793	2474	6765	4049	9839	2781	336	425	228
9	1227	1322	3726	318	925	3146	2591	1661	244	. 901	3589	2846	4795	1452	157	90
10	3105	848	773	1644	309	282	1125	1409	267	81	884	1983	1111	1332	436	36
11	629	1922	440	332	1176	185	102	426	383	157	120	378	643	285	464	50
12	454	313	1099	274	155	691	59	65	50	214	96	29	196	108	193	30
13	1912	309	107	633	83	51	213	53	0	51	145	28	30	29	64	10
≥ 14	850	1548	1525	887	572	307	164	188	81	40	54	58	79	17	18	5
Total	21221	24093	30993	37527	30563	25206	$38 \quad 285$	32473	45457	35370	24871	23089	17148	11343	5816	4695
Corresponding catch (tons)	85619	91683	108084	129939	117519	81634	90531	110483	129702	89247	74437	75353	50599	29190	20000	14735

() Provisional figures.
Table 30. Cod. ICES Sub-Area XIV plus ICNAF Divisions IE-IF.

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	0.00	0.00	0.02	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4	0.02	0.00	0.03	0.03	0.01	0.02	0.02	0.01	0.02	0.02	0.02	0.01	0.07	0.03	0.02	0.02
5	0.04	0.08	0.06	0.14	0.08	0.11	0.18	0.05	0.10	0.10	0.19	0.14	0.18	0.17	0.12	0.09
6	0.06	0.12	0.17	0.15	0.24	0.20	0.14	0.22	0.22	0.21	0.16	0.45	0.45	0.30	0.14	0.15
7	0.11	0.13	0.17	0.35	0.22	0.28	0.30	0.32	0.33	0.27	0.23	0.31	0.46	0.50	0.18	0.22
8	0.16	0.19	0.23	0.26	0.52	0.28	0.43	0.31	0.28	0.36	0.32	0.52	0.47	0.37	0.45	0.22
9	0.12	0.19	0.24	0.10	0.41	0.52	0.34	0.45	0.20	0.21	0.47	0.56	0.78	0.71	0.42	0.22
10	0.19	0.15	0.23	0.22	0.18	0.29	0.52	0.45	0.16	0.13	0.47	0.77	0.66	0.76	0.71	0.22
11	0.09	0.23	0.15	0.20	0.33	0.21	0.22	0.54	0.29	0.18	0.40	0.55	0.95	0.50	1.03	0.22
12	0.06	0.08	0.28	0.18	0.18	0.47	0.13	0.30	0.15	0.37	0.23	0.22	0.94	0.58	1.18	0.22
13	0.39	0.08	0.05	0.36	0.10	0.11	0.36	0.23	0.09	0.31	0.67	0.13	0.52	0.48	1.36	0.22
14	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.50	0.22
Mean $\mathrm{F} \geq 7$	0.14	0.18	0.22	0.31	0.32	0.32	0.38	0.36	0.31	0.30	0.29	0.48	0.63	0.61	0.50	0.22

The last group is a plus group.

- \#IStock in numbers at beginning of year.

Age	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
3	135469	103633	25548	82807	210.123	116737	191570	60170	15000	16137	10362	60481	3786	13246	25472	42172
4	144361	110912	84817	20521	67767	171963	95576	155753	49219	12273	13212	8484	49518	3099	10838	20801
5	24790	116123	90473	67558	16264	54952	138464	76430	126423	39305	9892	10603	6864	37861	2461	8686
6	21321	19446	87870	69568	47986	12261	40148	95075	59405	93277	29097	6684	7520	4686	26197	1783
7	78457	16382	14062	60588	48899	31035	8256	28647	62776	39209	61783	20378	3479	3940	2842	18607
8	17966	43009	8835	7261	26111	23943	14423	3737	12683	27732	$18 \quad 375$	29942	9174	1346	1461	1447
9	14042	9416	21871	4305	3428	9541	11123	5722	1683	5874	11823	8160	10877	3506	568	571
10	22965	7656	4752	10540	2392	1395	3458	4834	2242	843	2906	4515	2843	3062	1054	229
11	9435	11681	4037	2318	5194	1228	638	1265	1889	1168	454	1109	1276	903	874	317
12	9254	5295	5681	2134	1265	2283	610	313	452	864	595	187	393	302	337	190
13	7384	5318	3002	2638	1097	594	873	328	142	238	366	291	92	94	103	63
14	1683	3065	3020	1756	1133	608	325	372	160	79	107	115	156	34	36	16

Table 32. Prediction of catch and biomass for Cod in ICES Sub-Area XIV and ICNAF Divisions IE-IF.

1975	1976			1977			1978
$\begin{aligned} & \text { Biomas }^{x} \text {) } \\ & \text { Age } \geq 4 \\ & (1000 \text { tons }) \end{aligned}$	$\begin{aligned} & \text { Biomass }^{x} \text {) } \\ & \text { Age } \geq 4 \\ & (1000 \text { tons }) \end{aligned}$	${ }^{F}(\geq 7)$	$\left(\begin{array}{l} \text { Predicted }{ }^{\mathrm{x}} \text {) } \\ \text { catch } \\ \binom{1}{000 \text { tons }} \end{array}\right.$	$\begin{aligned} & \text { Biomasa }^{x} \text {) } \\ & \text { Age } \geq 4 \\ & (1000 \text { tons } \end{aligned}$	$\left.F^{(} \geq 7\right)$	$\begin{aligned} & \text { Predicted } \mathrm{x}) \\ & \text { catch } \\ & (1000 \text { tons }) \end{aligned}$	$\begin{aligned} & \text { Biomass }^{x} \text {) } \\ & \text { Age } \geq 4 \\ & (1000 \text { tons }) \end{aligned}$
126	136				0.22	$\begin{aligned} & 16.5 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 203 \\ & (85) \end{aligned}$
		0.22	$\begin{aligned} & 13.9 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 187 \\ & (57) \end{aligned}$	0.45	$\begin{aligned} & 30.5 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 185 \\ & (83) \end{aligned}$
					0.22	$\begin{aligned} & 14.7 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 196 \\ & (85) \end{aligned}$
		0.45	$\begin{aligned} & 26.2 \\ & (0.2) \end{aligned}$	$\begin{aligned} & 174 \\ & (56) \end{aligned}$	0.45	$\begin{aligned} & 27.1 \\ & (0.9) \end{aligned}$	$\begin{aligned} & 178 \\ & (83) \end{aligned}$

x) The biomass is given by 1 January and therefore includes only fish 4 years and older at that time. During the year 3-year-old fish will recruit, and some of these are included in the catch figures. dependent on the incoming year classes.
Table 33.

Age Years	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
7	17.1	3.5	3.0	11.9	10.2	6.3	1.7	5.7	12.4	8.0	12.8	4.1	0.7	0.7	0.6	3.9
8	3.8	9.0	1.8	1.5	4.8	4.8	2.7	0.7	2.6	5.4	3.7	5.5	1.7	0.3	0.3	0.3
9	3.1	2.0	4.6	0.9	0.7	1.7	2.2	1.1	0.4	1.2	2.2	1.5	1.8	0.6	0.1	0.1
10	4.8	1.6	1.0	2.2	0.5	0.3	0.6	1.0	0.5	0.2	0.5	0.7	0.5	0.5	0.2	-
11	2.1	2.4	0.9	0.5	1.0	0.3	0.1	0.2	0.4	0.2	0.1	0.2	0.2	0.2	0.1	0.1
12	2.1	1.2	1.1	0.5	0.2	0.4	0.1	0.1	0.1	0.2	0.1	-	0.1	0.1	-	-
13	1.4	1.2	0.7	0.5	0.2	0.1	0.2	-	\cdots	-	0.1	0.1	-	-	-	-
14	0.3	0.6	0.6	0.3	0.2	0.1	0.1	0.1	-	-	-	-	-	-	-	-
Total	34.7	21.5	13.6	18.3	17.8	14.0	7.7	8.9	16.4	14.2	19.5	12.1	5.0	2.4	1.3	$4 \cdot 4$

Age/Year Classes	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968
7	17.1	3.5	3.0	11.9	10.2	6.3	1.7	5.7	12.4	8.0	12.8	4.1	0.7	0.7	0.6	3.9
8	9.0	1.8	1.5	4.8	4.8	2.7	0.7	2.6	5.4	3.7	5.5	1.7	0.3	0.3	0.3	
9	4.6	0.9	0.7	1.7	2.2	1.1	0.4	1.2	2.2	1.5	1.8	1.6	0.1	0.1		
10	2.2	0.5	0.3	0.6	1.0	0.5	0.2	0.5	0.7	0.5	0.5	0.2	-			
11	1.0	0.3	0.1	0.2	0.4	0.2	0.1	0.2	0.2	0.2	0.1	0.1				
12	0.4	0.1	0.1	0.1	0.2	0.1	-	0.1	0.1	-	-	-				
13	0.2	-	-	-	0.1	0.1	-	-	-	-						
14	0.1	-	-	-	-	-	-	-	-							
Total	34.6	7.1	5.7	19.3	18.9	11.0	3.1	10.3	21.0	13.9	20.7	6.7	1.1	1.1	0.9	(3.9)

C 9

	Z	F		Z	F
1961	.570	.224	1973	.880	0.52
1962	.550	.269	1974	.930	0.55
1963	.805	.311			
1964	.755	.368			
1965	.770	.420			
1966	.690	. .31			
1967	.285	.211			
1968	.345	.213			
1969	.540	.283			
1970	.610	.338			
1971	.730	.529			
1972	.910	.560			
\boldsymbol{x}	.630	.312			

Figure 2. Iceland Cod.
The relation between fishing mortality from VPA and total mortality based on English trawler catch per effort.

Figure 4. Iceland Cod. Change in biomase with age in an unexploited year clase.

Figure 5. Iceland Cod.
 Yield per recruit and spawning stock per recruit under the present exploitation pattern.

D 1

```
Figure 8. Iceland Cod.
Relationship between English catch per effort
of 3 year old cod and eatimates from inter-
national 0-group surveys.
```


[^0]: x) Catches reported as Division INK (West Greeniand, unspecified) are given twa lines above. Parts of these catches have been allocated (by the Greenland Fisheries Institute) to Divisions IE-IF as given in the last arte.

