International Commission for

the Northwest Atlantic Fisheries

Serial No. 3918
(E)

ICNAF Summ.Doc. 76/VI/33

ANNUAL MEETING - JUNE 1976
Adequacy of sampling for TAC stocks, 1974

by
S. A. Akenhead

Biostatistician

Introduction

This assessment of the sampling efforts by ICNAF Member Countries towards the stocks for which total allowable catches (TACs) are set, is a continuation of previous assessments of the adequacy of sampling (ICNAF, 1975b). The Assessment Subcommittee of STACRES suggested the preparation of this report in an effort to identify those stocks for which commercial catch sampling data were inadequate in 1974 . The assessment of sampling adequacy was done on an annual basis for both length and age sampling, and the use of two sampling indices facilitates comparisons between stocks and between countries. The results of analyzing the 1974 sampling data are compared to similar analyses af 1973 data, where possible. Less than 60% of the 59 stocks examined were adequately sampled.

Methods

Conforming with the 1973 sampling data analysis, the minimum sampling requirement was taken to be 200 fish per 1,000 tons of fish caught. This minimum requirement was applied to the total yearly catch, reported in Statistical Bulletin Vol. 24 (ICNAF, 1975 a), to give the minimum number of fish expected to be sampled for the year. This figure was compared to the actual number of fish measured as reported in Sampling Yearbook Vol. 19 (ICNAF, 1976a). The resulting ratio, referred to as Sampling Index 1 , will be 1.0 for actually doing the minimal sampling, greater than 1.0 for more extensive sampling than the minimum, and less than 1.0 for inadequate sampling. Sampling Index 1 is directly comparable with the "total" sampling efficiency of Table 1, Summ.Doc. 75/11 (ICNAF, 1975b). This ratio of reported sampling to required sampling is conservative and tends to accentuate the seriousness of the inadequacy represented by a value of less than 1.0 for Sampling Index 1.

A total of 59 stocks were considered for 16 member countries (Iceland reported no fishing activity in 1974). With the exception of Canada (Newfoundland) and Canada (Maritimes), breakdowns within countries were combined. Almost no detail is lost by this, however, as Demmark is represented in the sampling data as Denmark (Greenland) with a single exception (cod in Div. 3M) and France is entirely France (St. Pierre and Miquelon). The stocks considered were those that pertained to a single species (for example, flounders in SA $5+6$ were omitted). These stocks include all of the species for which TACs were recommended by STACRES in 1976 for 1977.

Research data were not included in the analysis; it was considered that such data did not explicitly characterize removals from the stocks and therefore did not fulfill the requirements for commercial catch sampling data. USSR cod sampling data from exploratory vessels using regulation mesh trawls were included, as these were believed to represent commercial removals.

A second sampling index was calculated to answer a specific question: How do countries compare in sampling the different stocks that they fish? Sampling Index 2 was designed to be sensitive to failures to sample, and to disregard any potential weighting by stock removals. It is recognized to be an arbitrary performance indicator, yet it serves to identify countries that consistently fished stocks without returning any sampling data for those stocks. Sampling Index 2 is defined as

$$
\frac{\Sigma\left(\frac{\mathrm{X}-\mathrm{N}}{\mathrm{X}+\mathrm{N}}\right)_{\mathrm{i}}}{\Sigma \mathrm{i}}
$$

where $X=$ number of fish measured in stock i
and $N=$ minimum sampling requirement computed from the annual catch by stock and by country.

This function varies between -1.0 for failure to sample at all, 0.0 for sampling the minimum, and +1.0 (approached assymptotically) for sampling above the conservative requirement described. Figure 1 illustrates the relationship of the second index to the first.

Figure 1. Relationship between the two sampling indices for a single stock.

In producing the analysis, it occurred several times that a country with little or no catch would report sampling data. This tended to generate very large values for Sampling Index 1 , although not in Sampling Index 2. Sampling Index 1 was computed for all stocks and countries in which more than 1,000 tons of fish were removed by the country and whenever sampling data were reported and absence of sampling by a country was ignored when removals were less than 1,000 tons (indicated by " + " in Table 1). Sampling Index 2 was computed for the same stocks as used in determining Sampling Index 1. This gives a somewhat higher value for Sampling Index 2 to countries that sampled stocks in which they did little fishing.

Results

Table 1 provides the catch, numbers of aged and measured fish, and Sampling Index 1 for the stocks and countries considered. Included as well is a classification of the ageing data adequacy to provide an age frequency of the stock removals: for the country collecting the age data (in the body of the table), and for the stock as a whole, using the ageing data of all countries (in the stock totals). Consideration of the relative times of sampling and fishing is included in assessing the adequacy of ageing data. The last row of entries in Table 1 (TOTAL) is considered independently of country, and the sampling index is computed from the total catch and total sampling. The key to the entries in the cells of Table 1 is shown at the bottom of each page of the table. In 1974, no sampling data were reported for 5 stocks and inadequate data for 18 stocks. Thus, only 60% of the TAC stocks were adequately sampled, according to the very conservative measure of adequacy. Less than 50% of the TAC stock were adequately sampled with respect to age. It should also be noted that sampling data are still not being reported by sex for those species requiring such sampling.

In Table 2 the values of Sampling Index 1 for the stocks considered in 1974 are compared with corresponding values for 1973 data, where possible. Of the 48 possible comparisons, only 56% of the stocks could be considered as adequately sampled for length in 1973 (Sampling Index >1) and 58% in 1974. There were four stocks, which were adequately sampled in 1973 but not in 1974: cod in Div. 4VsW, silver hake in Div. 5Y, yellowtail in Div. 3LNO, and roundnose grenadier in SA 0+1.

Table 3 is the comparison of countries by Sampling Index 2. This table is an attempt to identify where the sampling inadequacies originate and indicates the extent of fishing for TAC species by each country in terms of both number of stocks and total tonnage of fish removed. Some pertinent comments are included when required. The countries are listed in descending order according to Sampling Index 2 .

Conclusions

The level of sampling in 1974 was still inadequate for many of the stocks under quota regulation. This was due largely to no sampling by some countries and generally inadequate sampling by others, while a few countries concentrated their sampling effort on selected stocks. In particular, no sampling data were reported in 1974 for the following stocks: cod in Div. 2GH; American plaice in Div. 3M; witch in
in Subdiv. BPs; and capelin stocks in SA $2+$ Div. 3K and in Subdiv. 3Ps. In general, there has been no improvement in the level of sampling between 1973 and 1974 , considering that less than 60% of the stocks could be considered as adequately sampled in those years.

References
ICNAF. 1975a. Tables 3 and 4 in Int. Comm. Northw. Atlant. Fish. Stat. Bul. Vol. 24:34-92.
ICNAF. MS 1975b. Efficiency of sampling the major fisheries of the Northwest Atlantic in 1973. Int. Comm. Norths. Atlant. Fish. Sum. Doc. 75/11, Serial No. 3466 (mimeographed).

ICNAF. 1976a. Sampling Yearbook for 1974, Int. Comm. Northw. Aslant. Fish. Sampling Yearbook Vol. 19: 1-50.

TABLE 1. Sampling Adequacy by Selected TAC Stocks, by Countries.

Sampling Index 1	$\mathrm{I}=$ inadequate age data $\mathrm{A}=$ adequate age data
Number of length measurements	Number of age measure- ments
Catch in thousands of tons	

Table 1. (continued)

Sampling Index 1	I = inadequate age data $\mathrm{A}=$ adequate age data
Number of length measurements	Number of age measurements
Catch in thousands of tons	

Table 1. (continued)

Table 1. (continued)

Sampling Index 1	I = inadequate age data $\Lambda=$ adequate age data
Number of length measurements	Number of age measure- ments
Catch in thousands of tons	

Table 1. (continued)

COUNTRY	$\begin{aligned} & \text { A. PLAICE } \\ & \text { 3LNO } \end{aligned}$	$\begin{aligned} & \text { A. PLAICE } \\ & \text { 3Ps } \end{aligned}$	A. PLAICE 4VWX	$\begin{array}{r} \text { WITCH } \\ 2 \mathrm{~J}+3 \mathrm{KL} \\ \hline \end{array}$	WITCH 3NO	WITCH $3 P_{s}$	WITCH 4VWX	$\begin{gathered} \text { YELLOWTAIL } \\ \text { 3LNO } \\ \hline \end{gathered}$
BUL								
CAN (MQ)			1.3 A				1.9 A	
			1391				1802 323	
	\pm	+	5	$+$	\pm	+	5	t
CAN (N)	2.7 A	1.7 A	0 - I	11.0. A	1.9 A	0 I	0 I	1.5 A
	18307 3631	1998737	0 O	4021 524	1031 363	$0 \quad 10$	$0 \quad 0$	48931905
	-34	- 6	1	2	3	-2	1	- 17
DEN								
FRA					1			
		$+$	$+$	$+$	\pm	+	$+$	
FRG				0 I				
				$0 \quad 0$				
	$+$			1				
GDR								
				$+$				
ITA								
JAP								
								$+$
NOR								
					1			
POL	6.2			6.1 I				
	762°			644710				
	$\underline{+}$			5				
POR								
				$+$		$+$		
ROM				+				
SPA								
USSR	0 I		0 I	0 I	0 O		0 I	0 I
	$0-1$ 0 0		0 O	0×0	$0 \quad 0$		0	$0 \ldots 0$
	10		$\underline{10}$	\square	- 5		1	7
UK								
	+		$+$	$+$	\pm		$+$	
USA							+	1
								\square
			\pm				$+$	$+$
TOTAL	1,0 A	1.5 A	0.4 A	3,3 A	0.6 I	$0 \ldots$	1.2 A	1.0
	190693631	$1998 \quad 737$	1391 331	3192-524	1031-363	$0 \quad 0$	1802323	4893.905
	46	-7	17	16	+ 8	2	$\underline{7}$	24

| Sampling Index 1 |
| :--- | :--- |\cdots| $I=$ inadequate age data |
| :--- |
| A = adequate age data |$|$| Number of age measure- |
| :--- |
| ments |
| measurements of length |
| Catch in thousands of tons |

Table 1. (continued)

Table 1. (continued)

Sampling Index 1	I $=$ inadequate age data $A=$ adequate age data
Number of length measurements	Number of age measure- ments
Catch in thousands of tons	

Table 1. (continued)

[^0]Table 2. Sampling adequacy for stocks, 1973 and 1974.

Species	Stock Area	Sampling Index 1	
		1974	1973
Cod	1	1.6	3.0
	$2 \mathrm{~J}+3 \mathrm{KL}$	1.3	1.6
	3M	0.1	0.1
	3NO	0.1	0.8
	3Ps	1.5	1.6
	4 VsW	0.7	1.8
	4X	0.4	0.3
	5 Y	0.1	0.0
	5Z	1.5	1.6
Haddock	4VW	4.6	3.2
	4X	3.0	3.1
	5	5.5	7.4
Redfish	$2+3 \mathrm{~K}$	0.9	0.5
	3M	3.0	3.5
	3LN	0.2	0.0
	30	0.2	0.0
	3P	0.3	0.8
	4VWX	2.0	4.7
	5	4.0	1.8
Silver hake	4VWX	15.0	3.1
	5 Y	0.7	1.7
	5Ze	4.6	3.6
	5Zw+6	0.5	0.9
Red hake	5Ze	9.4	4.7
	5Zw+6	1.2	0.7
Pollock	4VWX	1.3	0.8
	5	0.6	0.5
Yellowtail	3LNO	1.0	1.5
	4VWX	1.6	88.5
	5+6	3.5	3.3
American plaice	2+3K	3.0	1.8
	3M	0.0	0.0
	3LNO	1.0	0.9
	3Ps	1.5	0.6
	4VWX	0.4	0.3
Witch	$2 \mathrm{~J}+3 \mathrm{KL}$	3.3	1.6
	3NO	0.6	0.1
	3Ps	0.0	0.0
	4VWX	1.2	0.3
Greenland halibut	$0+1$	0.9	0.9
	$2+3 \mathrm{~kL}$	1.4	1.8
Roundnose grenadier	$0+1$	0.1	7.9
	$2+3$	1.6	0.6
Herring	5 Y	2.5	1.3
	5Z+6	2.7	4.3
Mackerel	5+6	1.6	1.5
Squid (NS)	$3+4^{1}$	1.8	2.2
	5+6	2.2	2.3

1 Assumed to be ILZex

Table 3. Sampling adequacy by countries using Sampling Index 2.

Country	Sampling Index 2^{1}	No. of Stocks in the index ${ }^{2}$	$\begin{aligned} & \text { Catch } \\ & \text { total }^{3} \end{aligned}$	Comments
Japan	$+.63$	8 (5)		Extensive effort on small catches. unsexed redfish lengths.
Poland	+. 42	12 (4)	188	
Romania	+. 42	3 (1)	9	
USA	$+.24$	18 (1)	135	Only haddock and yellowtail ages reported.
Canada (MQ)	+. 18	18 (2)	305	
UK	+. 15	7 (2)	10	
GDR	+. 11	9 (1)	128	Includes unsexed redfish from $2+3 \mathrm{~K}$.
Bulgaria	-0.11	1	25	
Canada(N)	-0.13	24 (1)	185	No sampling of the 4 capelin stocks.
Spain	-0.33	12 (1)	175	
Norway	-0.34	6 (1)	57	The only capelin data for 1974.
Denmark	-0.37	6	37	Includes unsampled cod from 3M by Denmark (Faroes).
USSR	-0.41	33 (3)	1011	Includes ages without corresponding lengths.
FRG	-0.79	6	72	
Italy	-1.00	1	5	No sampling data.
France ($S P+M$)	-1.00	4	18	Research data only.
Portugal	-1.00	9	129	No sampling data.

[^1]
[^0]: 1 Research sampling data was also forwarded, but not counted towards the commercial catch sampling.
 2 Unsexed data only; although this was applied toward the commercial catch sampling, its value is questionable.
 3 Catch mainly by Denmark (Faroes), sample from Denmark (Greenland).
 4 USSR cod sampling data was described as research, but mesh size suggested that it be best classed as indicative of commercial catches.
 This column refers to all of Div. 4 X , including the inshore portion excluded from the TAC.
 Includes 1114 lengths and 83 ages classed as $4 \mathrm{X}+5 \mathrm{Z}$ by Canada(Maritimes).
 USSR red hake $5 Z w+6$, for April to December, only the age-length keys were reported, without length frequencies.
 Yellowtail are not reported by management areas for SA 5 and 6.
 Herring in 4 V for all of 1974 , not seasonally.
 All squid from SA 3 and 4 are assumed to be Illex.
 Illex and Loligo are not fully separated for all countries in the catch statistics for 1974.

[^1]: See text for definition.
 Numbers in brackets are numbers of stocks for which sampling was reported but catches were less than 1,000 tons.
 3 Catches (000 tons) of the TAC stocks in Table 1 only.

