International Commission for

the Northwest Atlantic Fisheries

Serial No. 3943
ICNAF Summ.Doc. 76/VI/37
(D.a.75)

ANNUAL MEETING - JUNE 1976
Portuguese Research Report, 1975

by
Maria Luisa Portugal and Ana Maria Ravares
Servico de Estatistica e Dados
and
Manuel Lima Dias and Maria de Lourdes M. Godinho Servico de Biologia Pesqueira

Instituto de Pesca e Recursos
Lisbon, Portugal

O - INTRODUCTION.
The present paper summarizes some statistical data concerning the pottuguese fisheries in ICNAF area as well as some biological studies carried out from samples obtained on board of a trawler during November and december 1975, in subarea 3 (divisions 3L and 3m)

The first part concerns the statistical data referring the total catch and some information about cod fisheries.

The: second one contains the special research carried out on cod samples obtined on board of a trawler.

I $=$ STEATISTICAL 2 TIA

1 - TOTAL CATCH

Total Portuçuese Ca+ches in 1975 and in ICNAF área (Trawlers and Gill Nets) amounted to $99,789.0$ tons, compared to 144,777 tons in 1974, which means a decrease of about 30\%.

2 - TOTLE CíaChes 3Y SU3!REF
TABLE 1

19975		1974			
Suba	Tons	$\%$	Suba	Tons	$\%$
1	$5,014.6$	5.0	1	$10,198.0$	7.0
2	$11,299.7$	11.3	2	$23,191.0$	16.0
3	$68,589.8$	68,7	3	$93,540.0$	54.6
4	$14,885.3$	14.9	4	$17,843.0$	12.3

It can be observad that the largest catches took place, both in $1975^{\text {and }} 1974$, in Division 3 , but while in 1974 , suba. 3 is followed by suba. 2 (16.0%), in 1975 , suba 4 , is the second one, in amount of catches. Suba.l is, in both years, the suba. with the smallest catch. (Table $1, M a p l$)

3 - TOTAL CATCHES BY SPECIES

Atlantic cod is, undoubtably, the most important species caught. It represents, in $1975,84.4 \%$ of all species, and it must be stressed that this species represented in 1974, 92.0\% of total catch.

Redfiṣh is, in both years, the second species; 7.6% in 1975 and 4.9% in 1974 , but although the percentage has decreased, the total catch was about the same in both years:

For what concerns the other species, it can be observed that they don't follow the same order, being the most important case, the catches of capelin, which occupy the 8 th place in 1975, with 0.6%, while in 1974 it had the third place, 2.4%.

It can also be observed that, while in 1975, figures are a vailable for 10 main species, in 1974, we have data for only 6 of them. Species like ray, catfish and american plaice didn,t appear in 1974 da ta.

Greenland halibut has, in both Years, the smallest catches. (TABLE 2)

4. SPECIES BY DIVISION
4.1 - COD

Total cod catches reached, in 1975, only 84,279 tons, compared to 133,117 tons in 1974 , Still, considering catches by subarea it can be seen that the biggest catch took place in subarea 3 - 55,575.7 tons, followed by subarea 4, with $13,989.1$ tons and subarea 2-9,774.9 tons. smallest catch in subarea 1 , with 4,940.0 tons. Map 2 compares cod catches by subarea in 1975 and 1974.

TABLE - 3

SUBA.	1975		1974	
	TONS	$\%$	TONS	$\%$
1	$4,940.0$	5.9	$10,166.0$	7.6
2	$9,774.9$	11.6	$21,071.0$	15.8
3	$55,575.7$	65.9	$84,782.0$	63.7
4	$13,989.1$	16.6	17.098 .0	12.8

4.2 - RED FISH

Total redfish catch in 1975 (7,638.0 tons) is about the same than in 1974 ($7,165.0$ tons).

Also for this species, the largest amount was caught in subarea 3 ($5,925.4$ tons), follow ed by subarea 2 ($10,52.5$ tons) and subarea 4 (627.4 tons). Also in this case, subarea 1 had the smallest catch (32.7 tons)

TABLE - 4

SUBA: $: ~$	1975		1974	
	TOR:	$\%$	TONS	$\%$
1	32.7	0.4	-	0.0%
2	$1,052.5$	13.8	$2,020.0$	28.2
3	$5,925.4$	77.6	$4,395.0$	61.3
4	627.4	8.2	750.0	10.5

4.3. - OTHER SPECIES

Considering the catches by subarea, all the other species show the highest catch also in subarea 3. (Some of these species have, on the hand; 100% of their catch in subarea 3-- that is the case of the white hake, capelin and yellowtail.)

II $=$ BIOLOGICAL DATA

The studies about biological data concern length compositions, stages of maturity and age readings from otoliths samples.

The table bellow presents the samples obtained on board, from trawl catches, betwen 16 of November and 20 of December.

DIV.	SAMPLE	DATE	DEPTHS (m)	No. of LENGTHS	No. AGED
3M	1	16-23 Nov.	180-200	609	111
	2	1-20 Dec.	180-228	400	0
	$1+2$			1,009	111
3L	3	25-29 Nov.	225-228	201	132
	4	5-13 Dec.	180-200	518	0
	$3+4$			719	132
3M+3L	$1+2+3+4$			1,728	243

DIVISION 3M

a) LENGTIIS (Fig. 1)

Length compositions were ranged from 19 cm to 70 cm classes in November, and from 25 cm to 79 cm classes in December.

Mean length was, for November, 36.8 cm and for December 40.8 cm .
b) AGES (fig. l)

Concerning the quarter of the year, when we carried out the sampling, the $4^{\text {th }}$ one, (November and December), we must point out that the most important age group observed was the IV, followed by the V and III, 1971, 1970 and 1972 year classes respectively. The mean-age was 4.2 years and 4.4 years for November and December respectively.
c) GROWTH

Growth is shown in the following table of average lengths (figures in brackets concern the number of fishes observed).

AGE GROUP	IIV. 3M		
		4 th QUARTER	
	YEAR CLASS	NOVEMBER	DECEMBER
III	1972	30.6	31.0 (19)
IV	1971	35.8	36.6(38)
V	1970	40.0	44.0 (39)
VI	1969	59.1	57.9(13)
VII	1968	62.1	58.5(2)

d) STAGES OF MGTURITY (fig.2)

The observations on stage of maturity, both on males and fe males, showed only two phases of development, which were developing and resting or recovering ones. In males, the first one (developing) occurred with a percentage of 16% and the second one (resting), with a higher value 84%; in the females we observed the same proportion between the two stages, which were 5% for developing stage and 95% for the resting or recovering one.
e) AGE AT FIRST MATURITY

During the age readings we tried to recognize marks or rings of first maturity; due mainly to the high percentage of imature fish, it was impossible to observe it. For this reason the whole sample didn't show any otolith with maturity rings on it.
DIV. 3L
a) LENGTHS (fig. 3)

The lenghts were ranged from 28 cm to 82 cm classes in No vember and from 31 cm to 82 cm classes in December.

The mean lenghts were for November and December 53.5 cm and 52.8 cm respectively.
b) AGES (fig. 3)

The age lenght key for the $x^{\text {th }}$ quarter of the year was ela borated with ages only from November and lenght compositions from o bservations made during the last two months of the same quarter. The values obtained for the main age groups in November and Jecembsr, we re VII, VI and V relatively to November and V, VI and VII conrerning Jecember. The mean ages were 5.9 (November) and 5.8 (Jecember).
c) GROWTH

Growth is presented in the following table of average lengths (figures in brackets are the number of fishes observed for the whole quarter of the year).
DIV. 3L

		4 th QUARTER	
AGE GROUP	YEAR CLASS	NOVEM3ER	DECEMBER
III	1972	28.0	$-(1)$
IV	1971	39.3	$40.5(25)$
V	1970	45.4	$45.6(29)$
VI	1969	55.9	$55.2(25)$
VII	1968	62.0	$60.7(32)$
VIII	1967	69.3	$69.2(17)$
IX	1966	75.0	$70.6(3)$

d) STAGES OF MATURITY (fig. 4)

The observations on stage of maturity, both on males and females, showed only the stages of developing and the second one the resting or recovering. For males, the resting stage occurred with 34% and the developing one with 66%. In the females we observed 35% of the fishes in the developing phase and 65% in the resting or reco vering stage.
e) GGE AT FIRST MATURITY

Some of the otoliths observed allowed us to identify some marks of maturity; nevertheless the highest percentage of the oto-
liths observed from males, as well as from females, wexe either imature or didn;t present any marks concerning spawning season.

The table bellow shows the results and, from it, we can see that only in few fishes it was possible to identify some spawning structure at VI and VII years old.

DIVISION 3L - NOVEMBER

$\begin{aligned} & \text { AGE } \\ & \text { GROUP } \end{aligned}$	SFAWN MARKS	VI	$\begin{aligned} & \text { ON } \\ & \text { VII } \end{aligned}$	θ	T	VI	$\begin{gathered} q q \\ \text { VII } \end{gathered}$	θ	T
III		-			0			1	1
IV		,		12	12			13	13
V		-		15	15			14	14
VI		-		13	13			12	12
VII		-		17	17	1		14	15
VIII		1	1	5	7	3		7	10
IX					0	2	1		3
		1	1	62	64	6	1	61	68

θ - unknown including imature fish

IN ICMAF AREA
(ALL SPÉCIES , BY SUB-AREAS)
1974-1975

3M - November, December
(TRAWL)
Fig. 1B

STAGES OF MATURITY
 DIVISON 3 M - NOVEMBER 1975

STAGES OF MATURITY

DIVISON 3 L - NOVEMBER 1975

