International Commission for

the Northwest Atlantic Fisheries

Serial No. 5039 (D.c.3) ICNAF Res.Doc. 77/VI/19 (Revised)

ANNUAL MEETING - JUNE 1977

Assessment of yellowtail from ICNAF Divisions 3LNO

Ъу

T.K. Pitt
Department of Fisheries and Environment
Fisheries and Marine Service
Research and Resource Services
St. John's, Newfoundland, Canada

This stock has been regulated since 1973 with the various TACs and catches as follows:

	1973	1974	1975	1976	1977
TAC ('000 tons)	50.0	40.0	35.0	9.0	12.0
Catch ('000 tons)	32.8	24.2	22.9	7.8*	*

^{*} Provisional figure.

The assessment presented in 1975 pointed to a drastic reduction in stock abundance and very high levels of fishing mortality were required to take the 1973-75 catches although the latter were considerably below the recommended TACs (Table 1).

A major difficulty in assessing this stock is determining the abundance of the recruiting year-class (5-year-olds). The regression of the numbers at age from the cohort analysis on the average number per set from research trawler surveys gave good correlation for most age groups (Fig. 1 and 2), however for the 5-year-olds it is evident that the research vessel survey data is of little use in determining the recruitment level (Fig. 1). It is impossible to say if the difficulty lies in the inability of the research gear to properly sample the small fish, or if there are errors in the estimates in the cohort analysis possibly caused by the fact that discards of small fish were not taken into consideration.

At the 1976 Assessments Subcommittee Meeting, TACs were calculated by projecting several recruitment levels to give the 1977 TAC. A value 60×10^6 was used as the recruitment levels for 1975-77 to give a TAC for 1977 of 12,000 tons.

Using the same level of recruitment to project the 1978 TAC (Table 2) indicates that the 1976 TAC was taken at an average fishing mortality (F) (fully recruited) of 0.41, just below $F_{0.1}$ (0.5) (Fig. 3). The 1977 TAC (12,000 tons) should require a fishing level (F) of about 0.50 (Table 2). This would give a projected TAC for 1978 at $F_{0.1}$ of approximately 14,000 tons.

At least a stabilization of this stock appears to have occurred. The abundance indices from the 1976 research vessel surveys (Fig. 4) indicate an increase in catch per set both in Div. 3L and 3N and 3LN combined. The catch per hour for total effort has remained relatively constant since 1974 although the "main species" rates declined slightly in 1976. Total abundance indices (average numbers and weight) from research vessel surveys gave excellent correlation with total population weight and numbers from cohort analysis (Fig. 5).

It would appear that the drastic action taken in 1975 in reducing the TAC of 35,000 to 9,000 tons has had the desired effect in gradually restoring the stock.

Table 1. Yellowtail - Div. 3LNO

r	partial recruitment	1971	1972	1973	1974	1975	1976
		Popu	lation ('00	00 fish)			
	0.13	88608 78248	80529 50158	85999 50940	86360 45394	75883 46936	38936 46504
	0.35 0.76	78248 44510	31829	24457	17330	18049	16753
	1.00	14231	13939	6868	3440	3199	2409
	1.00	4539	5491	1244	1027	483	187
	1.00	584	1510	448	179	29	38
S	(Tons)	110930	93064	74898	64399	61465	47641
		Fi	shing Morta	ality			
		0.104	0.158	0.399	0.310	0.189	(.078)
		0.599	0.583	0.778	0.622	0.730	(.210)
		0.861	1.233	1.661	1.390 1.663	1.714 2.539	(.456) (.600)
		0.652 0.800	2.117 2.207	1.600 1.637	3.254	2.245	(.600)
		0.730	1.910	1.560	1.850	2.000	(.600)
	<u>.</u>		Catch ('00	0)			
		7534	10128	21280	19800	11240	2529
		30369	22502	23709	18100	20931	7650
		22117	19416	17053	11200	12737	5361 953
		5869	10553	4718	2400	2536 372	953 74
							15
		2152 245	4206 1110	862 300	850 130	372 23	

RESIDUAL (POP. NOS.)	46550.4 16802.8 2841.7 296.5 52.7 2.7	66546.7 RESIDUAL (POP. NOS.)	42281.3 27953.4 7897.5 1297.5 156.7	79612.4 RESIDUAL (POP. NOS.)	41651.8 26294.1 14161.6 3548.6 553.0	SIDUA P. NO	41651,8 25902,6 13321,0 6363,2 1594,5 262,0
CATCH WT.	3619.3 10172.5 7833.3 2064.3 382.8 27.6	CATCH WT.	814.3 3717.9 3297.0 775.7 76.1	8699.1 CATCH WT.	10052 2052 4736 459 459 55	M D I W	1052.1 2819.9 4458.5 3967.4 1256.7 241.0
POP. WT.	24418.2 22600.9 11100.1 2604.0 497.0 34.8	61255.1 POP. WT. (METRIC TONS)	19420.0 22623.5 10333.7 2313.1 305.1 63.3	54958.8 POP. WI.	19920.0 20548.7 17191.3 6428.6 1335.1 188.2	P. TE	19320.0 20242.8 16170.9 11527.6 3651.5 700.2
1975 MEAN WT. KG.	0.322 0.486 0.615 0.814 1.029	1976 Mean WT. KG.	0.480 0.615 0.615 1.029	1977 MEAN WT. KG.	0.4820.0.6686 0.6615 1.0029	1978 Mean Wt. Kg.	
YEARS FIGHING MORT.	0.188 0.718 1.549 2.078 2.078	YEARE FISHING MORT:	0.20 0.20 0.21 0.45 0.33 0.33 0.33 0.33	YEAR: FISHING MORT.	00000000000000000000000000000000000000	YEARH FISHING RORT.	00000 00000 00000 00000
0.3000 CATCH NO. (X10-3)	11240. 20931. 12737. 2536. 372.	47839. 0.3000 CATCH NO. (X10-3)	2529. 7650. 5361. 953. 74.	16582. 0.3000 CATCH NO. (X10-3)	33067 73090 74090 8410 845	ŽM IO	3267 72607 7250 1221 2261 2615
Table 2. YELLOWTAIL 3LNO NATURAL MORTALITY= AGE POP. NO. (x10-3)	75833 46504° 18049° 3199° 483°	144097. HORTALITY= POP. NO. (X10-3)	600000 4650500 1665050 266050 2640 534	TAIL 3LNO MORTALITY= POP. NO.	60000 42281. 27953. 7898. 1297.		600000 4100000 1400000 140000 14000
Table 2. 1 YELLOW NATURAL AGE	N 4 1 8 9 0	TOTAL Natural Age	N 4 L 40 Q Q	TOTAL 1 YELLOWIA NATURAL MGE	7. 40 F E E E E E E E E E E E E E E E E E E	AL	70 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Fig. 1. Population size of 5- and 6-year-old yellowtail from cohort analysis plotted against average no./set from research vessel surveys.

Fig. 2. Population size of 7-, 8- and 9-year-old yellowtail from cohort analysis plotted against average no./set from research vessel surveys.

Fig. 3. Yield per recruit for yellowtail from ICNAF Div. 3LNO.

Fig. 4. Average number per set from research vessel surveys for Div. 3L and 3N separately.

Fig. 5. Catch per hour for commercial yellowtail in Div. 3LNO.

Fig. 6. A. Total population size numbers from cohort analysis against average no./set from research vessel surveys.

B. Total biomass (tons) from cohort analysis against average wt/set (kg) from research vessel surveys.