International Commission for

the Northwest Atlantic Fisheries

<u>Serial No. 5145</u> (D.c.11) ICNAF Res.Doc. 77/XI/68 (Revised)

SPECIAL MEETING OF STACRES - NOVEMBER 1977

New estimates of harp seal production on the Front and in the Gulf of St. Lawrence and their impact on herd management¹

by

P.F. Lett, D.F. Gray and R.K. Mohn Fisheries Systems and Data Processing Group Marine Fish Division, Resource Branch Bedford Institute of Oceanography Dartmouth, Nova Scotia

Introduction

Estimation of the number of harp seals has proved to be somewhat of an enigma. Two approaches have been developing in parallel, a direct method using aerial sensing techniques (Lavigne, 1976) and indirect methods such as survivorship indices (Sergeant, 1969; Benjaminen and Øritsland, MS 1976) and sequential population analysis (Lett and Benjaminsen, 1977). Other visual estimates have been made which also rely on a systematic, fixed method of estimation (see p. 1175, Lett and Benjaminsen, 1977).

The aerial sensing method using ultraviolet photography produced a mean estimate of 125,958 pups in 1975 (Lavigne, 1975), or 14,671 pups less than the actual catch. This cursory appraisal was due to an unrealistic low estimate of the Front² herd (Lavigne, 1975) in addition to a number of other confounding factors. The 1977 aerial sensing produced a mean estimate, after correction factors were applied of 249,975. This value was contingent upon the use of the 1975 value for pup production in the Gulf of 46,300 animals, since the 1977 survey in this area was deemed incomplete (Lavigne et al., 1977). However, it is our opinion that this estimate is particularly suspect, since the catch of pups in the Gulf in 1971 was 74,182 seals. In 1972 the

¹ Following the Special Meeting of STACRES, 15-18 November 1977, this paper was revised at the request of the <u>ad hoc</u> Working Group on Seals. It contains important changes which could not be discussed at the Meeting.

² Front refers to the area where harp seals are present between February and May, off the east coast of Labrador and Newfoundland.

Gulf was closed to hunting, thus the stock should have started to build up by now, not to decline as the 46,300-estimate implies. The average catch of Gulf seal pups in the Gulf between 1964 and 1971 was 77,129.

Survivorship indices, projected ahead to 1977 using a numerical model, imply that pup production is now between 315,000 and 330,000 animals (Benjaminsen and Øritsland, MS 1976). Sequential population methods suggest that pup production between 1975 and 1977 has increased from 307,000 to 320,000 although these estimates are considered to be conservative (Lett and Benjaminsen, 1977).

Each year through the auspices of the International Commission for the Northwest Atlantic Fisheries (ICNAF) the status of the herd is re-evaluated, and new sources of data are brought a forward for analysis. This paper presents a new method for separating the Gulf and Front herds, in addition to fine tuning some of the parameter values and submodels associated with the Lett and Benjaminsen model (L-B model). Furthermore, new levels of maximum sustainable yield (MSY) and sustainable yield are calculated considering the Front and Gulf herds as separate breeding stocks which intermix at the juvenile stage.

Lastly, this paper will discuss the suppositions related to whether the Northwest Atlantic population is indeed one or two herds and the impact of each hypothesis on management. In the past, it has been too easy to select the hypothesis which most conveniently solved the problem at hand, without proper consideration being given to the impact on herd management. <u>Data Sources</u>

The assessment of an animal population requires the estimation of certain vital rates. Estimation of these rates depends mostly on the analysis of age frequencies and data related to the productive potential of the animal.

The main problem associated with the population modelling of harp seals has been the estimation of natural mortality. To estimate this parameter, the population structure as derived from Benjaminsen and Øritsland (MS 1975) and Lett and Benjaminsen

- 2 -

۲ Δ

(1977) is required. Further data on the age frequency in the large vessel and landsmen hunt for 1977 are presented by Sergeant (1977) and the weighted age frequencies are presented in Table 1.

Lett and Benjaminsen (1977) have already discussed the fact that only a sample of moulting males will represent the seal population structure. Unfortunately, in 1977 the sample taken was not sexed, thus the adjustment factors shown in Lett and Benjaminsen (1977, Fig. 1) were applied to the sample so that it would approximate the real population structure.

No new data were collected concerning maturity other than that already presented by Benjaminsen and Øritsland (MS 1975), Lett and Benjaminsen (1977) and Sergeant (1966, 1976). However, this information was revaluated to calculate new estimates of natural mortality and population numbers.

Catch and effort information not previously used in the analysis of the population dynamics of harp seals came from a number of Sources (Anon. 1968, 1975, 1977; G. Burke, Grand Falls, Newfoundland, pers. Comm.; Curran, MS 1977). This data was used to calculate pup production in the Gulf as well as check on aerial census estimates for the Front.

Estimating the Production of Harp Seal Pups in the Gulf of St. Lawrence

The escapement of pups from the Gulf of St. Lawrence in any one year depends on the level of hunting within the Gulf, and the original pup production. After "break-up" the pups move out of ICNAF Div. 4T into ICNAF Subdiv. 4Vn and 3Pn. They then "beat" their way north along the west coast of Newfoundland, where they are caught by landsmen in small power boats and by longliners. In Subdiv. 3Pn beaters are also taken by landsmen walking out from shore or in small power boats.

The method employed to analyze the data relies on hunting pressure occurring randomly, not staying constant from year to year or tending toward higher or lower levels. With the closing of the Gulf to hunting by all individuals except landsmen and inceased surveillance in the area, the consistency of the

- 3 -

A 4

12 G

statistics was altered (G. Burke, pers. comm.) For these reasons the analysis was restricted to the data for the years 1964 to 1971. The data are as follows:

		Landsmen	Catch/Man	Catch	Escapement	Pup	Smoothed Pup
Year	Men	4R, 3Pn catch	<u>4R, 3Pn</u>	<u>in 47</u>	<u>4 T</u>	Production	Production
1964	716	3,490	4.87	91,927	38,545	130,471	119,997
1965	1,918	19,635	10.24	18,011	81,047	99,058	106,852
1966	615	7,415	12.061	60,484	38,344	98,818	98,697
1967	274	334	1.22	88,921	9,644	98,577	94,356
1968	191	646	3.38	54,698	26,732	81,450	90,564
1969	732	6,057	8.26	35,402	65,375	100,777	94,982
1970	803	4,775	5.95	49,830	47,092	96,922	92,659
1971	406	526	1.30	65,726	10,289	76,015	89,952

l Not included in analysis, explanation is within the text.

The catch in Div. 4T includes pups caught by the Madeleinot, Canadian, and Norwegian large vessels, and aircraft. These catches were plotted against the catch per man in the 4R, 3Pn fishery (Fig. 1) and produced an inverse correlation. The 1966 point was not used because of its inconsistency with the remaining data. In this year, the catch per man of landsmen was particularly high because of abnormally loose ice conditions (Curran, per. comm.), thus a large catch of beaters resulted during early April north of 50°N (Sergeant, per. Comm.). The year 1965 was also exceptional since the so-called Mecatina patch drifted close to the western Newfoundland shore and resulted in a large kill. However, since ice conditions were normal in that year, power-boat operators still had the same degree of difficulty in hunting these animals, and thus the catch per man was usable in the analysis. These two situations certainly indicate that the separate Gulf sub-herds which seem to have distinct whelping periods and locations, and the activity of the herd and hunters, depends heavily on environmental conditions.

~ 4 -

A GM regression (Ricker, 1973) was applied to the ordered pairs of 4T catch, and catch per man (r=-0.791), since there is a sizable variance in both the estimation of the independent and dependent variables. The intercept on the independent axis should represent the average production in the Gulf between 1964 and 1971. Thus the average production for the period is estimated at 97,611 pups. It should be noted that the inclusion on the 1966 point alters this estimate by less than 1%, even though the correlation coefficient drops significantly. The average catch in 4T for the period was 57,789, leaving an average escapement of 39,423 pups.

The relationship between escapement and the catch per man in the 3Pn, 4R fishery should be positive, linear, and go through the origin. Since the average catch per man is 5.03,

Escapement = $7,917.1 \times CUE$

Thus, by knowing the catch per man, the escapement is predictable, as is the overall production when this is summed with the catch.

As illustrated in the foregoing table, pup productions predicated in this way are variable, but not so much that the trends cannot be detected. Therefore, we decided to use a running average, to produce values more consistent with the actual biological trend in Gulf production, by taking half the value on either side of the year of interest, and summing this with the mean year value and dividing by two. On end years, two-thirds of the 1964 and 1971 values were presented in the last column of the foregoing table.

Gulf seals have been known to whelp on the Front when the ice conditions were unfavourable (Lett and Benajminsen 1977), but the smoothing is justified since these seals can still be designated as Gulf breeding stocks.

Using a method devised by Ricker (1972) and suggested by Winters (pers. comm.), the escapements between 1964 and 1971 were projected ahead to 1978. It was necessary to make the following assumptions.

- 5 -

- (1) The maturity ogive gradually shifts (linearly) from that presenting in Lett and Benjaminsen (1977) to that presented in Sergeant (1976). No animals under 4 years of age will produce a pup.
- (2) The mixing of Gulf bedlamers was in accordance with Sergeant's (1977) tag returns in the Front.
- (3) The pregnancy rate was 0.95 (Lett and Benjaminsen, 1977).
- (4) One-third of the total catch of bedlamers were Gulf animals times the fraction presented in Sergeant's tag returns, since previous estimates indicate that one-third of the total stock stock resides in the Gulf, while two-thirds on the Front.
- (5) Fraction female bedlamers was assumed to be 0.50 in 1971(Lett and Benjaminsen, 1977).

By substracting the catch, using assumption (4) and catch data from Lett and Benjaminsen (1977), the 1964 to 1970 pup productions were brought forward to 1971 to represent the population aged 7 to 1, respectively. After applying the maturity ogive, fraction female, and pregnancy rate to these 1- to 7-year-old animals, the remaining animals required to make up the breeding stock were calculated by subtracting the sum of the breeding females aged 1 to 7 from the 1971 pup production. These remaining seals were designated as 8+. For this reason it should be noted that the estimation of the number of seals in the Gulf in 1971 is fairly critical in projection made beyond this point, and that variations in this estimate could have substantial influence on further conclusions.

According to the calculations presented here, pup production reached a minimum in 1974 of 87,622 seals. There was a continual decline from 1964 to 1974. The upsurge in 1975 was not due to the closing of the Gulf, but more a result of the entry of the 1969 year-class into the breeding stock. Since this time the Gulf herd has been increasing at about 8%/year, or at the same rate as the 1+ stock. Lavigne (1977) has criticized Canadian Government management policy on the basis that we have no idea that the harp seal herd will increase if protected. These figures would contradict his statement (see Lavigne, 1977, p.11). Furthermore, Lavigne et al. (1977) state that the best figure for Gulf

- 6 -

A 7

production is 46,300 seals in 1975, however our calculations would indicate that slightly less than half of the seals were actually photographed.

It has become apparent that it is quite difficult to photograph pups in the Gulf due to (1) the time over which whelping occurs, and (2) the spatial distribution of seals. Whelping in 1977 has been recorded as early as 25 February and as late as 21 March (S. Dudka, pers. comm.). Moreover, whelping occurs along leads and cracks in the ice which go for tens of miles. This statement is supported by the results from the 1977 aerial census where 1.07 times as much area was flown in the Gulf than on the Front, but only 14% as many seals were counted. Sequential Population Analysis

The sequential population analysis of the harp seal herd was based upon the catch-at-age data in Table 1 and assumptions on starting population sizes and final catch rates. Since the hunt is mainly concentrated at one time of the year, the appropriate form of the catch equation to use is:

 $N_{t+1} = (N_t - C_t) EXP (-M)$

There is no instantaneous rate of fishing mortality, F_t , in this equation and the appropriate indicator of fishing mortality is the exploitation rate, C_t/N_t .

Natural mortality, M, was calulated using unpublished estimates of pup production (Winters MS 1978) from survivorship indices between 1966 and 1977. This method of estimating pup production (Benjaminsen and Øritsland, MS 1975) is independent of estimates of M and catch-at-age data (Lett and Benjaminsen, 1977). In addition, information on maturity, sex ratio, and the pregnancy rates are needed to estimate M.

The population structure was determined from large vessel catch in the moulting patches as given in Lett and Benjaminsen (1977) and Sergeant (1977). These catches were multiplied by the fraction males at different ages (see Fig. 1, Lett and Benjaminsen, 1977) to then give the true representation of the population structure of 2+ animals. However, partial recruitments do annually vary to some degree among the younger age-groups,

8 A

- 7 -

therefore, only animals aged 5 to 22 were used to calculate natural mortality. The maturity ogive was assumed to vary linearly between 1966 and 1977.

By knowing the maturity, sex ratio, pregnancy rate and population structure, the pup production could be broken out over the appropriate age-groups to give estimates of numbers at age. We assumed, as Lett and Benjaminsen (1977), that 6% of the breeding females are over the age of 25. Thus, M can be simply calculated for each age-group using the formula

$$M = \ln \left[\frac{aN_t - aC_t}{a+1} \right]$$

This gave an estimate of M = 0.1 with an SE of 0.03 between 1966 and 1977 for age-groups 5 to 22. Sampling for ages over 22 was erratic and produced results in which we could have no confidence.

To obtain starting population estimates in 1977, a number of assumptions were made. First, four levels of pup production were assumed, 250, 300, 330, and 350 thousand animals. Justification for these values will be presented in later discussion. The population structure was that of moulting males, determined from a sample of both males and females. There is no available maturity data for 1977, so the latest maturity ogive is that in Table 20 in Sergeant (1976) for 1976. The age structure of breeding females was determined after applying the sex ratios given in Lett and Benjaminsen (1977, Table 6).

Assuming a pregnancy rate of 0.94, this age structure is used to estimate the number of breeding females-at-age needed to produce the given number of pups. From this, number-at-age for the population are derived, except of 1-year-olds.

This initial population in 1977 was projected back to 1952 using the catch data and catch equation, assuming hunting occurs during a relatively short period. The 1976 pup production was estimated during sex ratios from Lett and Benjaminsen (1977) and Sergeant's (1976) maturity ogive. Since pup production likely

- 8 -

Α9

varies less than the errors in numbers-at-age derived from the moulting patch samples, the pup production was smoothed and projected back to 1977 to re-estimate the starting numbers.

- 9 -

For a complete analysis, all that is now required are starting exploitation rates for the 25-year-olds. Sergeant (1976) has maturity data for 1976 and 1968-1970, and data for several years in the 1950's and early 1960's and in Sergeant (1966). Balancing between the changes in the proportion of the adult population caught and the adult population size needed to yield the obtained pup productions, starting exploitation rates were derived. The final results for numbers-at-age using a 1977 pup production of 330,000 are shown in Table 2 and the exploitation rates in Table 3.

One interesting question that could be answered using the method outlined above was, how low could pup production be in 1977 to produce consistent results. By consistent results, we mean that the maturity ogive in any given year would produce a pup production similar to that determined by an assumed starting population in 1977. It was found that the lowest pup production in 1977 that would give realistic results was 250,000. Values below 250,000 produced results that were impossible, unless there are serious errors associated with the catch-at-age and maturity information, which is generally felt to be our best data. Density-Dependent Whelping at Age

Sergeant (1966,1973) first proposed that the mean age of maturity was a density-dependent function relying on population size. Indeed, this phenomenon is well noted for other marine mammal (Gambell, 1973) and terrestrial mammal stocks (Markgren, 1969). Lett and Benjaminsen (1977) first showed the mathematical structure of such a relationship, relating maturity to the coincident population size. However, Lett and Benjaminsen (1977) go on to say that it is more likely that maturity is related to the growth rate of juvenile seals which is itself related to the population density. This would imply some lag between population size and mean age of maturity.

A 10

Sergeant's (1966, 1973, 1976) maturity data were used to find the best fit between mean age of maturity and population size using different lags. The lag producing the highest correlation was five years. Different pup productions in 1977, of course, gave different answers, but the lag period remained consistent. Thus, the equation that was developed to describe shifts in the mean age of whelping, Ω , was

$$\Omega = \beta_0 + \beta_1 \operatorname{pop}_{t-5}$$

where β_0 is a fitted constant, β_1 is that rate at which changes with the 1+ population size lagged five years, pop_{t-5} . For different starting populations, the following results were obtained.

Pup Production

1977	^β ο	<mark>β1</mark>	_Ω ₇₈
350,000	3.011	1.609	4.87
330,000	3.169	1.517	4.83
300,000	3.351	1.454	4.82
250,000	3.663	1.281	4.76

By amalgamating Sergeant's data for various years, it was possible to test for significant shifts in the standard deviation of the maturity ogive. No significant changes were noted, thus, it was possible to fit a cumulative normal or Arc sine transformation to linearize the data. It was found, in accordance with Lett and Benjaminsen (1977) that the Arc sine transformation, using a range of 0° to 90°, gave the best fit to the data. Thus the equation developed was

 $tE_a = Sine (31.34 + 19.91 \times \gamma)$

where tE_a is the fraction whelping at age a in year t, and γ where tE_a is the fraction whelping at age a in year t, and is the difference between the mean age of whelping and t. The expression in brackets is constrained within 0° and 90°. Estimation of Production on the Front

A number of estimates for Front production were determined by subtracting estimates for the Gulf from those determined by virtual population analysis and maturity ogives.

. ..

		From	Front pup production based upon										
		different	t total pu	p producti	on in 1977								
	Gulf												
Year	pup production	250,000	300,000	330,000	350,000								
1965	106,852	211,923	227,093	239,533	243,225								
66	. 98,697	214,178	238,699	247,504	253,109								
67	94,356	211,881	244,398	248,477	261,298								
68	90,564	222,667	246,141	258,094	266,220								
69	94,982	207,617	242,323	249,049	262,418								
1970	92,659	208,517	243,187	252,673	265,460								
71	89,952	203,095	237,921	248,222	263,575								
72	89,951	201,074	222,365	243,206	253,931								
73	88,793	195,984	216,445	243,876	253,684								
74	87,622	180,466	204,931	234,424	248,170								
1975	89,384	165,620	194,800	225,625	243,566								
76	91,631	171,101	198,512	238,493	252,634								
77	93,324	156,676	206,676	236,676	256,676								

- 11 -

No matter which estimate of total pup production is used, the 1+ population size has been increasing since 1972 when the strict quota of 150,000 seals was introduced (Fig.2). Lett and Benjaminsen (1977) show pup production increasing slightly since 1972, however, in this most recent analysis pup production does not begin to increase until 1975. In the case of 250,000 pups, production is still declining. The upsurge in pup production is due to the entry of the 1968 year-class in addition to the reduced killing of adults. The real effect of the quota on the breeding stock should not be seen until 1978. Pup production in the Gulf began to also increase in 1975 but this was not true for the Front (Fig.3). In the cases of the 300,000 and 330,000 pup production estimates, indeed the most likely estimates, the abundance of pups is still short of the 1972 level, although both lines are beginning to trend toward recovery. The failure of the Front to recover in the same manner as calculated for the Gulf is a result of most of the quota being moved onto the Front when the Gulf was

closed to hunting. For a total production of 300,000 pups, the Front sustainable yield is about 130,000 animals; and for 330,000 pups, is about 140,000 animals, assuming the present kill ratio. The total kill on the Front in the past three years has been in excess of about 135,000 seals or close to the sustainable yield. Thus, based upon these calculations, it would be prudent to consider moving some of the quota into the Gulf of St. Lawrence.

Other estimates of total and partial production on the Front are available. Using the daily catch rates and cumulative catches, the DeLury (1947) method was used to estimate the number of seals in the eastern portion of the herd which was thoroughly hunted. This method gives an estimate of 106,000 seals. Lavigne <u>et al</u>. (1977) give an estimate of 115,818 for this portion of the herd using their simple random method.

The DeLury method was also used to estimate the escapement from the whitecoat hunt on the Front. To use this procedure, it was first necessary to intercalibrate the longliners and large vessels by comparing their catch rates when hunting in a similar area. The intercalibration factor determined by the ratio of the CUE's was 8.9 for the period 28 March to 10 April. In other words, the daily effort of one large vessel was equivalent to 8.9 longliners. Unfortunately, the results from this method are inconclusive since the relationship between CUE and catch becomes discontinuous between 10 April and 14 April when the large vessels move out of the fishery. Two estimates were attempted, however, 0 138,000 pups using the data before 10 April and 140,000 using the data after 10 April. The total catch of whitecoats and beaters before 28 March was 59,851, giving a mean estimate of total Front production of 198,851, not much different from the Lavigne et al. estimate of 203,675 pups. However, it should be noted that this t represents a minimum estimate since it only applies to animals in the area of hunting. Animals outside this area are not accounted for.

- 12 -

A 13

Update of the Lett-Benjaminsen Model

In order to make estimates of MSY, sustainable yields (SY), and population projections, the model described in Lett and Benjaminsen (1977) was modified to incorporate recent findings. The primary modification was the splitting of the herd into two sub-herds, Front and Gulf. Generally, animals were assumed to remain with the sub-herd into which they were born with the exception of ages 1 to 3. Gulf animals in these age-groups were assumed to be found on the Front with the respective probabilities of 0.79, 0.69, and 0.11 based upon Sergeant's (1977) tag return data. The total herd was split on the basis of 68:32, Front to Gulf. This ratio was determined from the foregoing analysis. The age distribution of the catch on the Front was taken to be the same as that for the total herd published in Lett and Benjaminsen (1977). The distribution for the Gulf, however, was compiled from data from the LaTabatière region. The Greenland and high Arctic catches were subtracted from each herd proportionally to its size.

The whelping ogives differed somewhat from those of the published model. The mean age of whelping was determined in the manner already described with the mean age being a function of the 1+ herd size lagged by five years. Furthermore, this mean age was constrained to be greater than 4.5 years. The pregnancy rate determination is unchanged from the published model.

The MSY and SY estimates were found by taking averages over 10 stochastic runs. Natural mortalities were drawn from a distribution having a mean of 0.1 and an SD of 0.015. The landsmen catch was modelled to have a coefficient of variation of 0.4. Also, the normal distributions were drawn using the Box-Muller transformation instead of summing 12 draws from a uniform distribution as listed in Lett and Benajaminsen (1977). The five-year projections were found was using only the mean values of these parameters.

Catch projections and Calculation of MSY and SY

The TAC for 1978 has been set at 180,000 seals based upon the advice from the <u>ad hoc</u> Working Group on Seals (ICNAF, 1977). This management option was projected ahead using the modified L-B model

A 14

- 13 -

Fishery	Total	Pups	<u>l+ Seals</u>
Greenland and high Arcti	c 10,000	5,000	5,000
Norwegian large vessels	35,000	34,000	1,000
Gulf of St. Lawrence	35,000	27,000	8,000
Landsmen	(15,000)	(8,000)	(7,000)
Large Vessel	s (20,000)	(19,000)	(1,000)
Front Canadian	100,000	78,000	22,000
Landsmen	(50,000)	(29,000)	(21,000)
Large Vessel	la (50,000)	(49,000)	(1,000)
All areas	180,000	144,000	36,000

and the following breakdown of catch, which, in part, was based on the 1976 distribution of effort and an 80:20 pup to adult ratio.

The catch projections, using a TAC of 180,000 and the above breakdown of catch, are as follows.

Pups	Year	Front 1+	<u>Gulf 1+</u>	<u>Total 1+</u>
350 x 10 ³	1979	920 x 10^3	456×10^3	1,376 × 10 ³
	1980	918	477	1,395
	1981	921	497	1,418
	1982	932	520	1,452
	1983	941	541	1,482
330 x 10^3	1979	838	417	1,255
	1980	831	436	1,267
	1981	829	453	1,282
	1982	834	473	1,307
	1983	837	492	1,329
300×10^3	1979	710	357	1,068
	1980	696	372	1,068
	1981	684	385	1,069
	1982	678	399	1,077
	1983	669	412	1,081
250×10^3	1979	545	280	824
	1980	516	287	802
	1981	489	292	781
	1982	467	299	765
	1983	440	303	743

- 14 -

The sustainable yield calculations were made using a pup production figure of 330,000 for 1977. The rationale behind the use of this figure is as follows. A minimum estimate of pup production that is in keeping with the catch-effort data is about 300,000 seals. Maximum estimates of pup production are as high as 350,000. The figure of 330,000 was calculated for 1977, using sequential population methods and maturity data (Lett and Benjaminsen, 1977) and survivorship indices (Benjaminsen and Øritsland, MS 1976). Thus, the majority of evidence indicates that the 1977 pup production is at or near this value.

The sustainable yield for this pup production is 204,000 seals or 24,000 seals above the present TAC. Lett and Benjaminsen (1977) estimated the sustainable yield for 330,000 seals at 190,000, however, our new estimates of M are 12% lower, thus decreasing the loss of seals by this amount, due to natural causes. In addition, the total catch in 1977 fell short of the quota by 5,000 seals. It should be noted at this point that the sustainable yields calculated b. khe ad hoc Working Group on Seals (ICNAF, 1977) are optimistic in relation to the pup productions. The reasons for this are twofold. First, the new maturity information was not incorporated into the model when these runs were made, and the projections to calculate SY were only brought forward 20 years as opposed to 50 years used in this study. Thus, the good recruitment, resulting from much lower catches due to the installation of the quota, were still having an effect. Furthermore in the L-B model, the Gulf is separate from the Front, but the density-dependent effects occur while stock is mixed in the Arctic. Thus, increases in the Gulf herd causes the maturity ogive to shift to a position which does not compensate as well for the over-exploitation of the Front as would be the case if there are less than 300,000 seals born in 1978 (see foregoing table).

Lett and Benjaminsen (1977) first determined the MSY population level as a reference point for harp seal management at 1.6 million l+ seals. New data and analysis have allowed us to refine this estimate to 1.5 million, basically due to a 12% drop

- 15 -

in our estimation of M (Fig. 4). The maximum sustainable yield is 220,000 seals, assuming 20% 1+ seals and 80% pups in the catch. A previous estimate by Lett and Benjaminsen (1977) was 240,000. However, with the drop of M, the maximum sustainable yield must also drop proportionately.

Conclusions

Evidence has been presented showing the pup production in the Gulf of St. Lawrence is presently about 100,000 seals. Production in the Gulf has been increasing at 4%/year since 1975 because of s the large escapement in 1969 and the Gulf closure in 1972. It is expected that the rate of recovery of the Gulf of St. Lawrence herd will be greater when the full impact of the 1972 closure is felt.

Based upon numerical methods, the minimum possible total pup production is 250,000. However, biological evidence indicates that a minimum estimate of pup production is 300,000 while the maximum estimate is 350,000; thus a realistic estimate of pup production probably lies between 300,000-350,000 pups in 1977.

The fact that the Gulf pup production increases, while the Front declines, at pup productions less than 300,000 suggests that there is some degree of separation of the breeding stocks. Therefore, maybe TAC's should be assigned separately to these components. Failure to manage these two separate stock components properly may lead to a local overexploitation.

The maximum sustainable yield is 220,000 seals, assuming a kill ratio of 80% pups to 20% l+ seals, for a l+ population size of about 1.5 million seals. Under the present TAC of 180,000 animals, this level of population may be achieved in four to eight years.

Acknowledgement

We would like to thank B. Beck, T. Benjaminsen, P. F. Brodie, F. Kapel, D. M. Lavigne, A. W. Mansfield, M. C. Mercer, H. Rossell, D. E. Sergeant, and G. H. Winters for helpful comments and discussion. We also appreciated the help of T. Curran and D. E. Sergeant in providing unpublished information concerning the landsmen hunt.

- 16 -

- 17 -References

Anon. 1968. Canadian Atlantic coast harp and hood seal catch statistics. An historical series by regions, methods of capture, types of pelts, area of catch, 1946-1967. Economic Service, Dept. Fish. Can., 26 p.
1975. Canadian sealing statistics, 1968-1974. Intelligence Service Division, Marketing Services Branch, Dept. Envir., 21 p.
1977. Canadian sealing statistics, 1975-1981. Intelligence Services Division, Marketing Services Branch, Dept. Envir., 21 p.

- 21 p.
- Benjaminsen, T., and T. Øritsland. MS 1975. Adjusted estimates of year-class survival and production with estimates of mortality for northwestern Atlantic harp seals. (Unpublished manuscript).

MS 1976. Age-group frequencies, mortality and production estimates for Northwest Atlantic harp seals updated from samples collected off Newfoundland-Labrador in 1976. (Unpublished manuscript).

- Curran, T. MS 1977. Sealing report: 1977 season Newfoundland region 45 p.
- DeLury, D. B. 1947. On the estimation of biological populations. Biom., 3: 147-167.
- Gambell, R. 1973. Some effects of over-exploitation on reproduction in whales. <u>J. Reprod. Fertil. Suppl.</u>, 19: 533-553.
- ICNAF. 1977. Report of the <u>ad hoc</u> Working Group on Seals. Standing Committee on Research and Statistics (STACRES), International Commission for the Northwest Atlantic Fisheries (ICNAF), 15-18 November, 1977, Dartmouth, N.S., Canada. 13 p.
- Lavigne, D. M. 1975. Harp seal, <u>Pagophilus groenlandicus</u>, production in the western Atlantic during March 1975.
 ICNAF Res. Doc. 75/X11/150, Serial No. 3728. (mimeographed).
 1976. Counting harp seals using ultraviolet photography. Polar Rec., 18: 269-277.

B4

1977. Stock assessment and management of western Atlantic harp seals. <u>The 2nd Symposium on Endangered N. Amer. Wild.</u> and Hab., St. Louis, MO, 1-5 June. 16 p.

- Lavigne, D. M., S. Innes, W. Barchard, and W. G. Doubleday. 1977 The 1977 census of western Atlantic harp seals, <u>Pagophilus</u> <u>groenlandicus. ICNAF Res. Doc.</u> 77/X11/62 (Revised), Serial No. 5139. (mimeographed).
- Lett, P. F. and T. Benjaminsen. 1977. A stochastic model for the management of the northwestern Atlantic harp seal (Pagophilus groenlandicus) population. J. Fish. Res. Bd. Canada, Vol. 34: 1155-1187.
- Markgren, G. 1969. Reproduction of moose in Sweden. <u>Viltrevy</u> (Stockholm), 6 (3): 125-299.
- Ricker, W. E. 1972. Comments on the western Atlantic harp seal herd and proposals for the 1972 harvest. <u>ICNAF Res. Doc.</u> 75/X11/143 (Appendix), Serial No. 3716. (mimeographed).
 1973. Linear regressions in fishery research. <u>J. Fish.</u> Res. Bd. Canada, Vol. 30: 409-434.
- Sergeant, D. E. 1966. Reproductive rates of harp seals, Pagophilus groenlandicus (Erxleben), in the Northwest Atlantic. J. Fish. Res. Bd. Canada, Vol. 22: 433-464. 1969. On the population dynamics and size of stocks of harp seals in the northwestern Atlantic. ICNAF Res. Doc. 69/31, Serial 2171. (mimeographed). 1973. Environment and reproduction in seals. J. Reprod. Fertil. Suppl., 19: 555-561. 1976. Studies on harp seals of the western North Atlantic population in 1976. ICNAF Res. Doc. 76/X/124 (Revised), Serial No. 4010. (mimeographed). 1977. Studies on harp seals of the western North Atlantic population in 1977. ICNAF Res. Doc. 77/X1/58, Serial No. 5133. (mimeographed). Winters, G. H. 1978 MS. Surplus production and sustainable yield of the Northwest Atlantic Harp Seal. 47 p.

			-9											
Age	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	
0	198063	197975	184491	260020	346846	171909	149350	243255	164158	174762	211285	285994	270952	
1	4679	20685	35353	26005	14664	25488	44871	25180	37848	6586	27588	6780	2502	
2	11520	6527	14119	12499	7175	11796	20701	11796	18220	2597	34154	8785	4418	
3	7589	5888	4257	7526	4215	6631	12830	6675	10108	2566	9672	8044	6364	
4	5983	3913	6444 [`]	5467	3355	5280	11387	51 94	9486	3155	9549	4980	7429	
5	6875	3988	3590	4738	2660	4248	9163	4360	6478	1067	7108	4215	5364	
6	12029	3207	4207	3889	2310	3647	8247	3838	5783	1335	2932	4572	7702	
7	8451	2843	3879	3367	3208	3256	6812	3365	4877	1326	2978	4308	4117	
8	8302	2790	3351	3171	2045	2908	6268	3021	4200	811	3081	4349	3419	
9	5889	2732	2246	2588	1804	2618	5347	2731	3737	771	2963	3993	3289	
10	6711	2263	3271	2414	1588	2493	5231	2485	3506	1192	1350	4582	4751	
11	5889	2741	1350	2159	1378	2285	4754	2168	3145	712	2462	4440	2597	
12	1740	1664	2841	1031	1349	2088	4129	1961	2896	409	2075	3272	2544	
13	1532	1267	2806	1763	1169	1877	3792	1792	2627	411	1160	3440	2023	
14	2325	996	1430	1659	1112	1809	3419	1741	2488	403	1550	3562	1988	
15	4208	1909	1882	1567	964	1670	3141	1595	2284	204	2319	2828	2799	
16	1443	1901	2415	1485	1006	1541	2774	1479	2172	325	810	2240	2314	
17	2355	1395	1092	1311	867	1367	2566	1319	1912	248	1829	2355	2887	
18	1844	879	391	1161	865	1205	2188	1128	1673	130	914	1522	4290	
19	962	640	1243	1068	734	1112	1916	1075	1538	157	652	1242	2331	
20	49 71	2786	746	859	624	964	1741	854	1273	193	1470	1306	142	
2 1	1383	1630	356	674	450	696	1150	617	923	53	183	1107	2189	
22	60	909	338	592	392	615	1028	548	831	105	715	865	1130	
23	481	649	773	418	321	417	842	427	616	78	199	717	1130	
24	1344	468	151	348	263	371	702	343	513	65	183	566	1616	
25	481	254	320	47	54	83	157	62	69	103	215	267	628	
No.	L+ 109055	74924	98851	88806	53472	86465	165156	85736	129183	25002	117111	84377	79863	i.

.

animals

- 19 -

.

Table 1. Catch-at-age.

·

AGE	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
0	187384	225250	279858	159971	236532	220520	213349	119658	102744	118036	140629	132085	124932
1	7413	11558	10877	5980	20985	7844	7315	990	1949	9604	9629	10928	5458
2	3693	10383	5100	4521	2993	7535	2483	1289	2874	5629	5719	6241	4898
3	4898	5183	1959	3069	3088	2714	2591	2272	2511	2123	3275	3976	4271
4	6408	5414	2090	1823	2512	2644	1163	157 3	3087	1752	1999	2874	3154
5	7889	5880	3587	1682	2966	2387	1250	1604	3367	1945	2072	1567	1677
6	7349	6086	4760	1711	2125	1687	764	1041	1248	3144	1867	1264	1163
7	3121	5373	4341	2437	2479	1776	606	820	1299	985	1832	1073	921
8	1826	3543	3059	2498	2983	1637	542	752	1380	1200	1186	1027	743
9	1081	2018	2227	1705	2325	2045	776	659	1245	1283	740	481	357
10	1524	1928	1830	1757	1831	1958	837	842	1038	954	693	757	236
11	655	2522	2282	1310	1666	1286	554	592	1392	732	672	523	259
12	2088	1756	1570	1031	1153	1332	606	593	1360	891	605	369	161
13	660	1639	1316	976	1295	1175	490	552	1224	825	646	306	266
14	1553	1825	1852	1233	1333	844	277	355	1064	685	529	309	368
15	1415	1546	1810	1082	1393	1211	335	410	1067	674	353	517	335
16	794	1580	1289	1037	991	914	297	304	909	686	350	191	64
17	512	1104	1964	903	1248	847	284	264	682	594	247	221	35
18	846	1619	1592	1237	1039	780	357	224	623	447	323	145	131
19	961	1035	1608	1073	1042	703	251	158	526	377	159	135	29
20	340	1094	1143	742	927	676	322	252	566	306	127	155	128
21	593	780	684	485	680	389	203	132	288	282	88	40	50
22	282	349	491	684	554	312	286	94	690	287	106	46	35
23	58	687	552	379	491	185	229	67	201	201	59	53	29
24	87	373	400	267	267	195	129	54	151	219	97	31	27
25	87	256	342	139	310	91	222	40	171	210	74	30	22
NO.1+	56133	75531	58725	39761	58676	43167	23169	15933	29917	36035	33447	33259	24817
ANTMAI	s												

.

,

ANIMALS

TABLE 1.B

Table 2. Numbers-at-age from sequential population analysis with M = 0.1

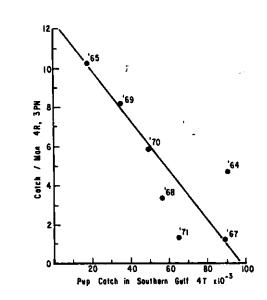
AGE	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964	
0	505086	469630	450983	490673	498106	424164	389247	431054	463599	443656	437658	463630	435599	
1	153858	277806	245803	241121	208704	136866	228250	217068	169928	179045	243306	204831	160732	
2	184879	134983	232653	190423	194655	175574	100779	165928	173628	119511	239202	195189	179204	
3	232645	156854	116232	197738	160993	169639	148193	72458	239481	140619	105788	185355	169668	
4	195796	203639	136600	101319	172111	141858	147496	122481	59523	117062	124915	86969	160061	
5	125092	171750	180720	117770	86731	152697	152697	123581	106126	45275	103067	104388	74187	
6	222802	106968	151798	160274	102275	76070	134322	103530	107491	90165	40001	86827	90640	
7	94047	190715	93887	133546	141503	90452	65531	114077	90205	92030	80377	33542	74428	
8	120176	77451	169994	81441	117790	126130	78899	53131	100177	77208	82072	70034	26452	
9	87609	101228	67556	150785	70823	104731	114496	65729	45342	86843	69127	71474	59434	
10	111262	73944	89123	59 095	134094	62451	92396	96047	56994	37646	77882	59868	61059	
11	73835	94602	64859	77682	51287	119897	54252	78870	84679	48398	32985	69249	50025	
12	46137	61480	83119	57466	68336	45160	106419	44788	69403	73757	43148	28523	58641	
13	103383	40172	54124	72639	50159	60 6 12	38973	92556	38751	60178	66368	37164	22848	
14	51316	92158	35203	46434	64131	44328	53146	31833	82187	32687	54079	59003	30515	
15	34888	44329	82487	30559	40514	57022	38473	44995	27229	72060	19212	47531	50166	
16	47049	27760	38384	72935	26233	35787	50085	31970	72060	22589	65018	24333	40440	
17	14302	41266	23399	32546	64650	22826	20987	42809	27589	33568	20145	58098	19991	
18	12599	10811	36077	20184	28262	57714	19417	25716	37541	23234	30149	16573	50439	
19	13518	9732	8986	32290	17213	247 9 0	51131	15590	22249	32455	20905	26453	13619	
20	14985	11361	8227	7007	28251	14911	21425	44532	13133	18740	29225	18326	22812	
21	10515	9061	7759	6769	5563	24998	12619	17811	39521	10732	16782	25113	25400	
22	4487	8263	6724	6699	5515	4626	21989	10378	15558	34925	9663	15019	21722	
23	21570	4006	6654	5778	5526	4635	3629	18967	8895	13325	31507	8096	12807	
24	21395	19082	3037	5322	4850	4709	3817	2522	16775	7491	11987	28328	6677	
25	24050	18143	16843	2612	4500	4150	3925	2819	1972	14715	6719	10680	25120	
No,l+	2022185	1987552	1960233	1910430	1854657	1762622	1741219	1639739	1573553	1576144	1633615	1571136	1496620	
anima	ls													

Table	2 8												
AGE	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
0	346385	346201	342833	348658	344031	345332	338174	333157	332672	322046	315009	330124	330000
1	148978	143870	109441	56983	170731	97269	112935	112947	193182	208047	194596	157786	179193
2	143172	128094	119721	89185	46149	135496	80915	95569	101303	173035	179559	158316	132882
3	158153	126206	106509	103714	76607	39049	1157 8 4	70960	85308	89062	151475	157297	137603
4	146857	138671	109506	94601	91067	66523	32878	102421	62159	74918	78666	134097	138730
5	138596	127083	120576	97194	83949	80128	57800	28697	91251	54356	66203	69371	118735
6	62274	118268	109669	105856	86423	73277	70343	51168	24514	79521	47423	58028	61351
7	75046	49698	101507	94926	94234	76276	64777	62958	45357	21057	69109	41221	51362
8	63620	65080	40107	87919	83688	83024	67411	58064	56225	39866	18161	60875	36327
9	20841	55913	55681	33522	77292	73025	73642	60505	51858	49625	34986	15360	54152
10	50893	27880	48767	48367	28790	67833	64225	65932	54151	45797	43742	30987	13463
11	50950	44671	14434	42470	42175	24393	59607	57356	58896	48059	40576	38953	27353
12	42914	45509	38138	10995	37243	36654	20908	53433	51362	52032	42823	36106	34772
13	50759	36941	39589	33088	9016	32656	31961	18370	47812	45244	46274	38201	32336
14	18843	45332	31943	34631	29056	6986	28485	28476	16123	42154	40192	41286	34288
15	25813	15 6 45	39366	27227	30220	25085	5558	25524	25445	13626	37523	35888	37077
16	42858	22076	12757	33982	23657	26084	21602	4726	22724	22058	11719	33633	32005
17	34506	38061	18545	10377	29810	20509	22775	19278	4001	19739	19338	10287	30259
18	15476	30759	33440	15004	8573	25844	17791	20350	17204	3003	17323	17275	9108
19	41757	13238	26367	28818	12457	6817	22679	15775	18211	15003	2313	15382	15499
20	10214	36914	11042	22403	25105	10328	5532	20294	14131	16002	1 32 35	1949	13796
21	20512	8934	32411	8957	19599	21877	8734	4714	18135	12274	14203	11860	1623
• 22	11954	18024	7378	28708	7666	17119	19443	7719	4146	16139	10851	12771	10695
23	18632	10562	15993	6232	25357	6435	15208	17334	6900	3127	14244	9723	11514
24	10566	16807	8935	13972	5296	22500	5655	13553	15624	6061	2648	12926	8749
25	4579	9482	14870	7723	12400	4550	20182	5000	12215	14000	5286	2308	1166
No.l+	1408752	1363706	1266682	1136841	1156549	1079726	1046817	1021120	1098225	1163794	1192556	1201875	1234539
anima	18												

В9

.

- 23	-
------	---


<u>T_4.e</u>	JUNPIG	lacion	1400 100										
AGE	1952	1953	1954	1955	1956	1957	1958	1959	1960	1961	1962	1963	1964
0	.392	.422	.409	.530	.696	.405	.384	.564	.354	.394	.483	.617	.622
1	.030	.074	.144	.108	.070	.186	.197	.116	.223	•024	.113	.033	.016
2	.062	.048	.061	.066	.037	.067	.205	.071	.105	.022	.143	.045	.025
3	.033	.038	.037	.038	.026	.039	.087	.092	.072	.018	.091	.043	.038
4	.031	.019	•047	.054	.019	.037	.077	.042	.159	.027	.076	.057	•046
5	.055	.023	.020	.040	.031	.028	.074	.035	.061	.024	.069	.040	.072
6	.054	.030	.028	.024	.023	•048	.061	.037	.054	.015	.073	.053	.085
7	.090	.015	.041	.025	.015	.036	.104	.029	.054	.014	.037	.128	.055
8	.069	.036	.020	.039	.017	.023	.079	.057	.042	•011	.038	.062	.128
9	.067	.027	.033	.017	.025	.025	.048	.042	.082	•009	.043	.056	.054
10	.060	.031	.037	.041	.012	•040	.057	.026	.062	.032	.017	•077	.078
11	•080	.029	.021	.028	.027	.019	.088	.027	.037	.015	.044	.064	.052
12	.038	.027	.034	.035	•020	.046	.039	•044	.042	.006	.048	.115	.043
13	.015	.032	.052	•024	.023	.031	.097	.019	.068	.007	.017	.093	.089
14	.045	.011	.041	.036	.017	.041	.064	.055	.030	.012	.029	.060	.065
15	.121	.043	.023	.051	•024	.029	.082	.035	.083	.003	.079	.059	.056
16	.031	.068	.063	.020	.038	.043	.055	.046	.055	.014	.012	.092	.057
17	.165	.034	.047	.040	.013	.060	.083	.031	.069	.007	.091	.041	.144
18	.146	.081	.011	.058	.031	.021	.113	.044	.045	.006	.030	.092	.08 5
19	.071	.066	.138	.033	.043	.045	.037	.069	.069	.005	.031	.047	.171
20	.332	.245	.091	.123	•022	•065	.081	.019	.097	.010	.050	.071	•006
21	.132	.180	.046	.100	.081	.028	.091	.035	•023	.005	.011	.044	.142
22	.013	.110	.050	.088	.071	.133	.047	.053	.053	.003	•074	.058	.052
23	.022	.162	.116	.072	.058	.090	.232	.023	.069	•008	•006	.089	.088
24	.063	.025	•050	.065	.054	.079	.184	.136	.031	.009	.015	.020	.242
25	.020	.014	.019	.018	.012	.020	.040	.022	.035	.007	.032	.025	.025
F1-25	.074	.059	.051	.050	.032	.051	.093	.048	.069	.012	.051	.063	.077

.

- 24	_
------	---

Table 3b

Table 3	0												
Age	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
0	.541	.651	.815	.459	.688	.639	.631	.359	.309	.367	.446	.400	.379
1	.050	.080	.099	.105	.123	.081	•065	.009	.010	.046	•052	.069	.030
2	.026	.081	.043	.051	.065	.056	.031	.013	.028	.033	.032	.039	.037
3	.031	.041	.018	.030	.040	.070	.022	.032	.029	•024	.022	.025	,031
4	.044	.039	.019	.019	.028	.040	.035	.015	.034	.023	.025	.021	.023
5	.057	.046	.030	.017	.035	.030	.022	.056	.037	.036	.031	.023	.014
6	.118	.051	•043	.016	.025	.023	.011	.020	.051	.040	.039	•022	.019
7	.042	.108	.043	.026	.026	.023	.009	.013	.029	•047	.027	.026	.018
8	.029	.054	.076	.028	.036	.020	.008	.013	.025	.030	.065	.017	.020
9	.052	.036	.040	.051	.030	.028	.011	.011	.024	.026	.021	.031	.007
10	.030	.108	.038	.036	.064	.029	.013	.013	.019	.021	.016	.024	.018
11	.013	.056	.158	.031	.040	.053	•009	.010	.024	.015	.017	.013	.009
12	.049	.039	.041	.094	.031	.036	.029	.011	.026	.017	•014	.010	.005
13	.013	.044	.033	.029	.144	.036	.015	.030	.026	.018	•014	.008	.008
14	.082	.040	.058	.036	.046	.121	.010	.012	.066	.016	.013	.007	.011
15	.055	.099	.046	.040	.046	.048	.060	.016	.042	.049	.009	.014	.009
16	.019	.072	.101	.031	.042	.035	.014	•064	.040	.031	.030	.006	.002
17	.015	.029	.106	.087	.042	.041	.012	.014	.170	.030	.013	.021	.001
18	.055	.053	.048	.082	.121	.030	.020	.011	.036	.149	.019	.008	.014
19	.023	.078	.061	.037	.084	.103	.011	.010	.029	.025	.069	.009	.002
20	.033	.030	.104	.033	.037	.065	.058	.012	.040	.019	.010	•080	.009
21	.029	.087	.021	.054	.035	.018	.023	.028	.016	.023	.006	.003	.031
22	.024	.019	•067	.024	.072	.018	.015	.012	.166	.018	.010	.004	.003
23	.003	.065	.035	.061	.019	.029	.0154	.004	.029	.064	.004	.005	.003
24	.008	.022	.045	.019	.050	.009	.023	.004	•010	.036	.037	.002	. 003
25	.019	.027	.023	.018	.025	.020	.011	.008	.014	.015	.014	.013	.002
F ₁₋₂₅		.056	.056	.042	.052	.042	.022	.018	.041	.034	.024	.020	.013
*1-25													

- 25 -

Fig. 1 Geometric mean regression between catch in 4T and catch/man in 4R, 3Fn.

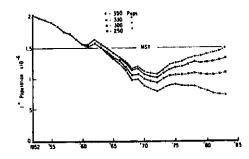


Fig. 2 Population estimates and projections from 1952 to 1983.

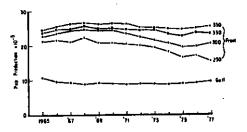
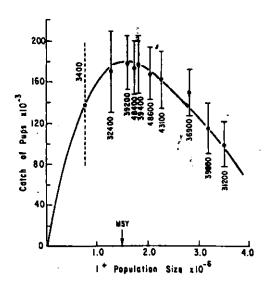



Fig. 3 Estimates of Gulf and Front productions from 1965 to 1977 varying estimates of total production for 1977.

- 26 -

Fig. 4 Graham-Schaefer plot, for 20-80 adult to pup ratio in catch and 350,000 production for 1977. Bars indicate two stand deviations and numbers are associated adult catch.