International Commission for

the Northwest Atlantic Fisheries

Serial No. 5146
ICNAF Res. Doc. $77 / \mathrm{XI} / 69$
(D.c.9)

SPECIAL MEETING OF STACRES - NOVEMBER 1977
Catch per unit effort in the Faroese prawn fishery (Pandalus boxealis) in ICNAF Subarea 1, 1975-1977
by
Kjartan Hoydal
Fiskirannsoknarstovan Debesartr申d, Torshavn, Faroe Islands
and
Hans Lassen
Danish Institute for Fishery and Marine Research
Charlottenlund Slot, DK-2920 Charlottenlund, Denmark

SUMMARY

The present paper deals with information collected via logbook sheets from prawn trawlers from the Faroe Islands operating off West Greenland in ICNAF Subarea 1. For a description of the logbook system, see Hoydal (1973). The data included in the analysis refer to the years 1975, 1976, and preliminary results for the first nine months of 1977 and includes altogether about 15,000 separate trawl hauls in the West Greenland offshore area.

The statistical method applied is analysis of variance with catch per unit effort (CPUE) as a dependent variable, and ship, date, time of day, and the statistical rectangle as the independent variables. The results from the statistical analysis suggest that a multiplicative model describes the data, but also that a significant part of the variance is left unexplained.

CPUE	Catch of shrimp (Pandalus borealis) in weight (kg) divided by trawl duration in minutes x 60. Dimension is kg x hour ${ }^{-1}$.
S	Factor referring to ship efficiency. Dimension hour-1.
D	Factor referring to average over the day density of shrimp stock. Dimension kg .
F	Factor referring to relative abundance over the day $[D \times F$ is the abundance index on which the trawl operates.]
ε	Stochastic term.
$\ell C P U E, \ell S, \ell D, \ell F, \ell E$	The logarithm to the base E of $C P U E, S, D, F$, and ε, respectively.
α, β	Coefficients.
N	Stock in numbers.
$\mathrm{M}^{\mathbf{f}}$	Fraction of stock removed by fishing.
M^{0}	Fraction of stock which die of other causes than fishing.
$\mathbf{E}_{\mathbf{r}_{1} \mathbf{r}}$	Fraction of stock in rectangle r which migrate into rectangle r_{1}.
W_{t}	Weight of a single specimen at month t.

R_{rt}	Recruitment in numbers at month t.
α_{t}	AVailability.
Subscripts	
s	ship
r	rectangle
h	hour of the day (from 0 to 23)
d	date
m	month
y	year (either 1975, 1976, or 1977)
t	time in months with January 1975=1

Data Base

The Faroese prawn trawlers are obliged to keep a logbook on board ship. Each haul should be recorded giving the date, time, and duration of the haul, together with the position (30' latitude $x 1^{\circ}$ longitude rectangle). The gear type is also recorded (for description, see Hoydal, 1976). The skipper assesses the catch of each haul of each species and records his estimate. Copies of the logbook sheets are transferred to Faroese authorities (Hoydal, 1973). These data form the basis of the present investigation.

Eight Faroese trawlers took part in the fishery in 1975, and 11 in 1976. All vessels have submitted the logbooks together with the actual landings. However, the quality of the information of one ship operating for the first time in 1976 is low and that ship is excluded from the analysis. The logbooks do not make any distinction between a zero catch due to no shrimp avallable and a wrecked trawl. Any haul with zero catch is therefore excluded. Also excluded is any haul recorded with incomplete information. This leaves the number of recorded hauls to be included in the analysis as given in Table 1.

Precision of Information

Catch

Effort

Catch per unit effort
The skippers are requested to give estimates of the catches in units of 100 kg . The overall average catch per haul is about 500 kg . The best possible information will consequently be subject to uncertainty of $1 / 2 \times 100 / 500 \times 100 \%=10 \%$ due to the recording of the catches in units of 100 kg .

The logbook requests the skippers to state duration of haul in units of minutes. However, a unit of a quarter of an hour is used in practice. Average duration of haul is about 100 minutes and the recording will be uncertain by at the very best $1 / \times \times 15 / 100 \times 100 \%=8 \%$.

The calculated catch per unit effort (CPUE) thus is borne with an uncertainty of at least 18%.

Definition of Cells

The data collected allow the following cell definition in the analysis of variance, by

- rectangle
- day
- hour of the day
- depth to the bottom when the trawl starts fishing
- fishing vessel.

In principle, the gear could be added to the list but only one gear is actually used, a shrimp trawl.
The rectangles can be grouped into Subareas which was done in some analyses. For all analyses, the month has been used as the finest breakdown of time of the year instead of the date.

Theory

The data were investigated applying analysis of variance (Rao, 1965). The actual computer program applied was the routine "GLM" of SAS-76, Barr et al. (1976) implemented on an IBM $370 / 165$ situated at the Danish Techaical High School of Copenhagen.

The Models

The models investigated are all of the following type:
CPUE $=S \times D \times F \times \varepsilon$
reformulated as
ℓ CPUE $=\langle$ intercept $\rangle+\ell S+\ell D+\ell F+\ell E$
(For explanation of the symbols, please consult the notation section.)
The alternative model type
CPUE $=S+D+F+\varepsilon$
was considered early in the project, but was rejected due to considerable smaller explanation of the variance compared to the multiplicative type of model. This applies to all cases when a specific version of the additive and multiplicative model both were fitted to the data.

Diurnal Variation in CPUE (F)
Both Smidt (1976) and Horsted (1976) present curves of diurnal variation of CPUE. The curves are characteristic by a rather irregular pattern with a marked higher level of CPUE from around 11:00 AM to late in the afternoon. This effect in the Faroese data was first investigated by the following model:

1) $\quad \ell \mathrm{CPUE}=\ell \mathrm{S}_{\mathbf{s}}+\ell D_{r}+\ell \mathrm{F}_{\mathrm{h}}+\ell \varepsilon$
which was applied to the 1975 data for Div. 1B, 1C, 1D, and IE separately for each month. The results of ℓF for May and August 1975 are shown in Fig. 1. The figure suggests a fairly sydmetric variation with a peak around noon. Consequently, the model was modified to:
2) $\ell F_{h}=\alpha \cos \frac{2 \pi}{24} h+\beta \cos \frac{4 \pi}{24} h$.

Terms containing sin $\frac{\pi}{24} h$ and $\sin \frac{2 \pi}{24} h$ were also fitted, but did not contribute significantly (on a 5% significance ${ }^{24}$ level) to explanation of the variance.

The modification substituted to equation (1) giving the modified model
3) $\ell C P U E=\ell S_{s}+\ell D_{y m r}+\alpha_{y m} \cos \frac{2 \pi}{24} h+\beta_{y m} \cos \frac{4 \pi}{24} h+\ell \varepsilon$
which was fitted for each Subarea separately.
The analysis of variance schemes are found in Table 2, and the diurnal variations estimated by the model for May and August 1975, Div. 1B, are shown as curves in Fig. 2.

Relative Abundance by Month and by Rectangle

The factor $\mathrm{D}_{\mathrm{y} \text { orr }}$ is the relative abundance averaged over the day. That is the abundance measured, if trawling was started at midnight and concluded 24 hours later. The factor is estimated directly from the model (Equation 3) which is fitted for each group of rectangles forming a subarea. The analysis of variance scheme is found in Table 2. The fitted parameters are given in Table 3. The analysis of variance schemes gives correlation coefficients in the range 0.39 to 0.62 . This means that only 39% to 62% of the total variation around the intercept has been explained applying the model above. Inspection of residuals reveals no obvious trends, neither in diurnal variation nor as a trend over the time series. The model has consequently no obvious extension.

The next step is to combine the $D_{\text {ymr }}$'s for each subarea into an index of stock density which may be applied to that subarea. This can be done as follows:

1. The Dymr's are averaged over the fished rectangles.
2. The Dymr's are summed over the fished rectangles.
3. Each trawl is handled as a random sample representing the entire stock in that subarea. The model then becomes

$$
\ell C P U E=\ell S_{S}+\ell D_{y m a}+\alpha_{y m a} \cos \frac{2 \pi}{24} h+\beta_{y m a} \cos \frac{2 \pi}{24} h+\ell E .
$$

The choice between the three above-mentioned indices should be based on the biological evidence avallable. If the Faroese prawn trawlers exploit the entire stock at any monent, procedure 2 would be applicable, while either procedure 1 or 3 apply when the Faroese fleet is only exploiting part of the stock at any moment.

The assumption underlying procedure 3 , no density differences between rectangles within a given month and subarea, has been tested with the 1975 data. The result is given in Table 4 . It appears from Table 4 that the assumption is invalid at least in April-May and September-October in Div. IB. As the overwhelming part of the fishery takes place in Div. 1B, procedure 3 does not seem justified.

The Faroese fishery does not seem to exploit the entire stock at any moment, and procedure 1 is consequently to be preferred to procedure 3. The calculated stock density indices month by month for Div. IB and $1 D$ can be found in Table 5.

The two other divisions have been left out due to the difficulties with the internal normalization. These indices have been plotted in Fig. 3 as a time series for the two divisions.

The indices by rectangles, coming out in the 3 years treated, calculated as the antilog of (<intercept $+D_{y m r}$) are plotted out on charts in Fig. 4.

Relative Efficiency of Trawlers

The factors S_{s} is estimated from the model (3) and the results can be found in Table 2 (analysis of variance scheme) and Table 3 (estimated coefficients). Even though every normalization has been done, one trawler (8307) large differences in efficiency between the same trawler operating in different subareas can be observed in Table 3. The reason for this is not known and calls for care when interpreting the results.

Discussion

Interpretation of the stock density indices can be done in the light of the general model:
$N_{r t+1}=N_{r t}\left[1-M_{t}^{f}-M_{t}^{0}-\sum_{r_{1}} E_{r_{1} r}(t)\right]+\sum_{r_{1}} N_{r_{1} t} E_{r r_{1}}(t)+R_{r t}$
CPUE $_{r t}=\alpha_{t} W_{t} N_{r t}$
The model points out several weaknesses of the calculated stock densities. First - changes in the number of shrimps per kg over the fishing season are ignored due to lack of fnformation. Second - even though grouping the information into divisions tends to diminish the influence of migration, it is an unknown parameter in any interpretation. Third - recruitment to the fishable stock will influence the average number of shrimps per kg in the catch as well as the actual number of shrimps in the stock. Fourth - the availability α_{t} may change during the fishing season.

Even with the treatment of these large data base limitations in the information taken from catch-effort data are evident.

This point has a severe bearing on the usefulness of any survey data also.
The exercise should, however, be a useful supplement to and correction of the "swept area" method based on raw CPUE data used, e.g. by Ulltang and Dynes (1976) and Hoydal (1976).

It is suggested to be a worthwhile exercise to try to plot these calculated indices in Table 5 against cumulative effort (see Ricker, 1975, p. 153-154).

REFERENCES

Barr, A.J., J.H. Goodnight, J.P. Sall, and J.T. Helwig. 1976. A User's Guide to SAS-76. SAS Institute Inc., P.O. Box 10522, Raleigh, North Carolina 27605 USA.

Horsted, Sv.Aa. 1976. A trawl survey of the offshore shrimp grounds of ICNAF Div, 1 B and an estimate of the shrimp biomass. Int. Comm. Northw. Atlant. Fish. Research Document 76/XII/150, Serial No. 4046. (mimeographed).

Hoydal, K. 1976. An assessment of the deep sea shrimp (Pandalus borealis) in West Greenland waters (Subarea 1) based on Faroese catch/effort data and information on fishing areas from the Faroese fishery. Int. Comm. Northw. Atlant. Fish. Research Document 76/VI/15, Serial No. 3795. (mimeographed).
1973. A new system of fisheries statistics in the Faroe Islands. Int. Comm. Northw. Atlant. Fish. Research Document 73/112, Serial No. 3076. (mimeographed).

Rao, C.R. 1965. Linear statistical interference and its applications. J. Wiley \& Sons, New York.
Smidt, E. 1976. Diurnal variations in shrimp catches on the offshore grounds of ICNAF Div. 1B. Int. Comm. Northu. Atlant. Fish. Research Document 76/XII/149, Serial No. 4045. (mimeographed).

Ulltang, Ø., and P. Øynes. 1976, Norwegian investigations on the deep sea shrimp (Pandalus borealis) in West Greenland waters. Int. Corm. Northu. Atlant. Fish. Research Document 76/XII/155, Serial No. 4051. (mimeographed).

TABLE 1. Number of recorded hauls by month and Subarea included in the analyses.

Division				
Month	1 B	1 C	10	1E
January	8	-	371	3
	296	153	247	-
	630	12	-	-
February	-	37	287	-
	220	58	98	-
	256	221	107	-
March	-	31	276	14
	-	24	194	-
	303	217	51	-
April	262	15	57	5
	406	60	232	10
	688	-	3	8
May	701	28	-	-
	1147	-	4	-
	919	-	-	-
June	376	221	153	12
	1131	3	47	-
	766	93	30	-
July	-	8	220	314
	861	11	100	-
	690	141	68	-
August	361	1	94	27
	787	-	-	-
	343	-	-	-
September	240	77	165	3
	450	-	-	23
	34	-	-	-
October	557	-	53	44
	511	-	-	-
November	458	-	$\overline{7}$	-
	832	9	111	-
	-	-	-	-
December	402	29	-	-
	508	6	-	-
	-	-	-	-

[^0]Table 2. Analysis of variance scheme for the model
ℓ CPUE $=\langle$ intercept $\rangle+\ell S_{s}+\ell D_{r y m}+\alpha_{y m} \cos \frac{2 \pi}{24} h+\beta_{y m} \cos \frac{4 \pi}{24} h$
applied for each Div: 1B, 1C, 1C, and 1E. The null hypothesis is lCPUE $=$ < intercept \rangle_{20} The type I SS is the so-called sequential test, that is, a test that the $x 2$ term (cos $\frac{2 \pi}{24} h$) contributes to the explanation of the variance if BAADNO (trawler efficiency) and RECT ($\mathrm{D}_{\mathrm{rym}}$) already have been taken into account. The type IV SS is testing the reduction in sum of ${ }^{\text {rym }}$ quares due to that effect given all other effects. For detafls see Barr et al. (1976).

Explanation of terms:	BAADNO	Ship number (code), lSx
	RECT (AAR*MDR)	$\mathrm{D}_{\text {rym }}$
	$\underline{~}{ }^{2}$ ($A A R * M D R$)	$a_{\text {ym }} \cos \frac{2 \pi}{24} \mathrm{~h}$
	x4 (AAR*MDR)	$B_{y m} \cos \frac{4 \pi}{24} \mathrm{~h}$

$$
D / V_{1} \quad A B
$$

Table 2. continued

Div: IC

GFNEDAL LINEAR MODELS PROCEDURE

$$
\begin{aligned}
& \rightarrow 1 / 10
\end{aligned}
$$

$$
\begin{aligned}
& \text { GENERAL LINEAr MODELS PATCEDURE }
\end{aligned}
$$

Table 2. continued
DIV. IE GENERAL LINEAR MODELS PROCEDURE

Table 3. Estimated parameters in the model
$\ell C P U E=\langle$ intercept $\rangle+\ell S_{s}+\ell D_{r y m}+\alpha_{y m} \cos \frac{2 \pi}{24} h+\beta_{y m} \cos \frac{4 \pi}{24} h+\ell_{\varepsilon}$
for each Div. 1B, 1C, 1D, and 1E. The fitted values correspond to the analysis of variance schemes given in Table 2. The B after a parameter signifies that a normalization has taken place. The normalizations are:

$l S_{8307}$	$=0$	
$\ell D_{205058,77,9}$	$=0$	Division 1B
$\ell D_{209055,77,7}$	$=0$	Division 1C
$\ell D_{210054,77,7}$	$=0$	Division 1D
$\ell D_{218055,77,4}$	$=0$	Division 1E

plus extras in Div. IC and 1E. These extras make interpretation difficult for these two Divisions.

Intercept and ℓS (ship's efficiency) are given. Stock indices are given in the charts of Fig. 4 and Table 5 and examples of the diurnal variation in Fig. 2.

Table 4. Testing identity of stock density between rectangles in 1975 within a given month and subarea.

Month	1975							
	1 B		1 C		10		IF	
	No. of rect.	P	$\begin{aligned} & \text { No. of } \\ & \text { rect. } \end{aligned}$	P	$\begin{aligned} & \text { No. of } \\ & \text { rect. } \end{aligned}$	P	No. of rect.	P
Jan	,	-	0	. ${ }^{\circ}$	6	0.0001	1	-
Feb	0	-	3	0.8715	8	0.0002	0	-
Mar	0	-	1	-	7	0.0001	1	
Apr	4	0.0206	1	- ${ }^{-}$	4	0.1139	1	
May	6	0.0001	2	0.6146	0	- 0.	0	-
June	3	0.2792	6	0.0001	5	0.0736	2	
July	0	-	1	-	5	0.0484	2	0.1912
Aug	4	0.1189	1	- ${ }^{-}$	5	0.8728	2	0.1912
Sep	6	0.0203	3	0.0449	5	0.0456	1	- ${ }^{-}$
Oct	5	0.0001	1	-	4	0.0001	4	0.0163
Nov	2	0.7752	0	-	0	-	0	-
Dec	5	0.2158	1	-	0	-	0	-

a Cannot be compared.
The test is an F-test in the model $\ell C P U E=\ell S_{s}+\ell F_{h}+\ell D_{r}$ fitted for each subarea, year and month. The figure is prob ($\ell \mathrm{D}_{\mathrm{r}}=0 \mid \ell \mathrm{s}_{\mathrm{s}}, \ell \mathrm{F}_{\mathrm{h}}$) $\cdot 0.0001$ means $\leqslant 0.0001$ means that either no fishery took place or only one rectangle was exploited.

Table 5. Indices of stock density for Div. $1 B$ and 10 calculated from Table 3 by averaging over all fished rectangles in the division by month.

Month	1975				1976				$1977{ }^{\text {a }}$			
	1 B		TD		1 B		10		1B		10	
	No. of rect.	Index	$\begin{aligned} & \text { No. of } \\ & \text { rect. } \end{aligned}$	Index	$\begin{aligned} & \text { No. of } \\ & \text { rect. } \end{aligned}$	Index	No. of rect.	Index	No. of rect.	Index	$\begin{aligned} & \text { No. of } \\ & \text { rect. } \end{aligned}$	Index
Jan	1	1.53	6	0.09	4	0.73	5	-0.06	7	0.78	0	-
Feb	0	-	8	0.12	3	1.51	4	-0.16	6	0.82	2	0.12
Mar	0	-	7	0.36	0	-	6	0.11	3	1.17	5	-0.32
Apr	4	1.19	5	0.33	5	1.33	9	-0.13	5	0.73	1	-0.20
May	6	1.24	0		9	1.54	2	-0.86	12	0.25	0	-
June	4	0.97	5	-0.12	6	1.07	2	-0.44	12	0.75	2	-0.05
July	0	-	5	0.06	6	0.68	2	0.07	8	0.82	0	-
Aug	4	0.50	5	-0.29	5	0.88	0	-	7	0.27	0	-
Sep	6	-0.01	5	-0.68	5	0.20	0					
Oct	5	0.88	4	-0.19	5	0.37	0	-				
Nov	4	0.82	0	-	9	0.31	4	0.21				
Dec	5	0.61	0	-	7	0.27	0	-				

a Provisional.

Fig. 1. Diurnal variation in $\log _{e}$ CPUE as fitted by the model ℓ CPUE $=\ell \mathrm{S}_{\mathrm{s}}+\ell \mathrm{D}_{\mathrm{r}}+\ell \mathrm{F}_{\mathrm{h}}+\ell \varepsilon$.

Fig. 2 to follow as an Addendum to this document

- 14 -

Fig. 3. Stock density estimates for Div. 1B and 1D against time.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. January - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued February - 1975, 1976, and 1977.

- 17 -

Fig. 4. CPUE estimated from model as intercept + index of rectangle.
continued March - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued April - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle.
continued May - 1975, 1976, and 1977.

Fig. 4. GPUE estimated from model as intercept + index for rectangle. continued June - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued July - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued August - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle.
continued September - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued October - 1975, 1976, and 1977.

Fig. 4. CPUE estimated from model as intercept + index for rectangle. continued November - 1975, 1976, and 1977.

- 26 -

Fig. 4. CPUE estimated from model as intercept + Index for rectangle. continued December - 1975, 1976, and 1977.

[^0]: * The three entries in each row refer to 1975, 1976, 1977 respectively.

