NOT TO BE CITED WITHOUT PRIOR REFERENCE TO THE AUTHOR(S)

International Commission for

the Northwest Atlantic Fisheries

Serial No. 5166 (D.c.8)

ICNAF Res.Doc. 78/II/14 (Revised)

SPECIAL MEETING OF STACRES - FEBRUARY 1978

The effects of gear type on the Japanese squid (Illex illecebrosus) fishery

by

D.E. Waldron and D.F. Gray Marine Fish Division Resource Branch, Maritimes Bedford Institute of Oceanography Dartmouth, Nova Scotia, Canada

Introduction

In July, August and September 1977, the R/V Shirane Maru was used for two trips which experimented with different gears in the Japanese squid fishery in ICNAF subdivision 4VWX. The vessel carried out regular fishing operations except that the gear type was changed periodically and fishing was concentrated in four predetermined areas. The object of the experiment was to determine if there was some combination of gear type and area that would allow adequate squid catches for a commercial operation and would also produce a minimal by-catch. The differences in catch rates between day and night fishing were also examined.

Equipment and Design

The three trawl gears used included two off-bottom gears and a regular otter trawl. One off-bottom gear had only dangler chains and will be referred to as the "chain" trawl. The other had dangler chains and large rollers or bobbins and will be referred to as the "bobbin" trawl. Details of the gear shapes and sizes are given in Table 1 and Figures 1 and 2. The mesh sizes were determined using a standard ICNAF measuring gauge.

During the two cruises, fishing was concentrated in 4 areas (Figs. 3&4). Areas 1, 2, and 4 were used during the first cruise. Areas 1, 2, and 3 were used during the second cruise. On the first cruise, the otter trawl gear was not used.

Results and experiences of the first cruise were used to help design the second cruise in such a way that the data obtained from it would be readily handled by standard statistical techniques. It was the aim of the second cruise to split the sets evenly between different gear types, between the different areas and proportionately between day and night. In each area it would have been ideal to randomly select the gear for each set but this was impossible due to the amount of time needed to change gear. Instead a fairly regular gear rotation was instituted.

On each set data was collected on the catch. The weights of squid and all by-catch species were measured or estimated. For each species, a sample of approximately 250 was taken to obtain length, weight, sex, maturity and ageing material.

Statistical Analysis

This analysis was only performed on the data from the second cruise. Tables 2 & 3 show the cross tabulations of area, gear and time in pairs. Area 0 is anything outside 1, 2 or 3. They show a uniform enough division of sampling to allow a meaningful standard analysis of variance to be run.

All data from the second cruise from areas 1, 2 and 3 was run through the SPSS ANOVA program (see Appendix 1.). To make the distributions more nearly normal in (catch +1) was used instead of the raw catch data. A summary of the results is as follows:

GEAR NAME	CHAIN	REGULAR (OTTER)	BOBBIN
GEAR TYPE	PELAGIC	BOTTOM	BOTTOM
FOOT ROPE LENGTH (M)	60	72	72
HEAD ROPE LENGTH (M)	60	54	54
HEAD ROPE HEIGHT (M)	8	7	7
WINGSPREAD (M)	35	28	28
LENGTH OF BRIDLES (M)	150	173	173
TYPE OF DOORS	PELAGIC	BOTTOM	BOTTOM
DOOR WEIGHT (KG)	2100	3064	3064
DOOR LENGTH (CM)	220	260	260
DOOR HEIGHT (CM)	450	369	369
MESH SIZE IN WINGS (MM)	371	141	140
MESH SIZE IN BODY (MM)	143	114	113
MESH SIZE IN CODEND	91	92	93
LINER IN CODEND	YES	Yes	YES
MESH SIZE IN LINER (MM)	45	44	43
CHAFING GEAR FITTED	YES	YES	YES
ROLLERS ON FOOTROPE	NO	YES	YES
CENTRAL ROLLER DIAMETER ((MM) O	0	530
LATERAL ROLLER DIAMETER (MM) O	0	530

Table 1. Dimensions of three trawling gear types.

- 1. Squid. Only area is significant at the 5% level though gear and time are significant at the 10% level. No interactions are significant so the multiple classification analysis is meaningful. (This shows the mean of all observations and the deviations from the mean accounted for by different values of the independent variable). This shows that less squid was caught in area 3 and areas 1 and 2 are about equivalent. The otter trawl was most efficient and the chain least. 75% of the variation in catch is not accounted for by these variables.
- 2. Silver Hake. Gear and area were very significant but the two-way interactions between gear-area and area-time are also of borderline significance at the 10% level. These interaction terms indicate some bias in the multiple classification analysis and is results must be treated cautiously. Indications are that silver hake is caught predominately in area 2, and that chain gear will catch much less than the other two. Over half the variation in catch is explained.
- 3. <u>Cod, Haddock, Plaice and Redfish</u>. All other catches were small and the large number of zero catches may have affected the results since the distributions of ln (catch +1) did not closely approach normality. All ANOVA's showed

significant interactions at the 1% level and thus the multiple classification analyses must be treated with some skepticism. However, on the whole the otter trawl caught the most and the chain caught almost none. For area, the results are more variable. More haddock was caught in area 3 where the least plaice and redfish were caught. For cod, area was not significant.

Table 2. Japanese squid data, Jan. 1978, cross tabulations of gear, area and time.

There was one major problem with the analysis. The areas were fished in the other 1, then 2, then 3. Some of the inter-area differences may be due to date and not area. Two tests were used to try and help resolve this problem. The longest data series exists for area 1 because it was most heavily used on the first trip. Regressions were run of ln (catch +1) vs. date and (date)² for all area 1 catches and for bobbin and chain catches, each separately. In all the runs very little of the variation was explained, and for any coefficient of date or (date)² that showed significance, zero was always in the 95% confidence interval for that coefficient. However, this analysis did not cover the whole time of the second cruise. The second test was to run date as a covariate in the ANOVA's discussed above. The results were ambiguous. There was no increase in amount of variance explained but some of the significance of the area parameter was reduced. See the following table:

	Without date variable	After adjusting for date
Squid	1) about	2) about
	2) equal	1) equal
	3	3
Silver Hake	2	2
	1	3
	3	1

Area listed according to positive affect on catch, highest first

- 4 -

For squid the effect is small, since area 1 and 2 do not differ significantly. For silver hake the difference is marked. The true effect of date must lie somewhere between these extremes but the data does not allow a complete analysis since the effect is confounded with the effect due to area.

The analysis shows that chain gear catches somewhat less squid but catches much less by-catch. It also shows that more squid can be taken in areas 1 and 2 than in 3. If date is significant, the least is caught in area 1. The difference is significant and if the decision on which area produces least by-catch is used to determine where to fish squid, it will significantly affect the squid catch. However, the way the data was collected does not permit an analysis that would settle this question.

	60UNT	TIME		
	LUUNI	I Iday I	NIGHT	ROW Total
APEA		I 1	1 5	I
	0	I 5 1	I O I	I 5 I 3.8
	1	I 32 1	I 10 I	1 42 1 32.3
	5	I 30 I	I 13 I	1 43 I 33.1
	3	1 24 1		1 40 1 30.8
	COLUMN Total	96 73.8	34 26.2	1 130 100.0

Table 3. Japanese squid data, Jan. 1978. cross tabulations of gear, area and time.

B6

Fig. 3. Sampling locations for Phase I of the 1977 Canada-Japan gear study.

Fig. 4. Sampling locations for Phase II of the 1977 Canada-Japan gear study.

- 7 -

JAPANESE SQUID DATA, JAN. 1 Analysis of Variance; six s File noname (creation d	978 Pecies, (Ate = 78	CLASSICAL (8/03/03.)	IN LN + 1		
* * * * * * * * * * A N A L SQUID -37 GEAR Area	YSIS	OFV	ARIANC	E * * *	* * * * * *
TI4E * * * * * * * * * * * * *	* * * *	* * * * *	* * * * * *	* * * *	* * * * * * *
SOURCE OF VARIATION		SUM OF Squares	DF	MEAN Suuare	SIGNIF F OF F
MAIN EFFECTS GEAR AREA TIME		213.458 26.524 177.522 15.860	5 2 2 1	42.692 13.262 88.761 15.860	7.468 .001 2.320 .103 15.527 .001 2.774 .099
2-WAY INTERACTIONS GEAR AREA GEAR TIME AREA TIME		25.975 18.564 4.046 1.132	8 4 2 2	3.247 4.641 2.023 .566	.568 .802 .812 .520 .354 .703 .099 .906
3-WAY INTERACTIONS Gear Area Fige		2.997 2.997	41 41	.749 .749	.131 .971 .131 .971
EXPLAINED		242.430	17	14.261	2,495 .002
RESIDUAL		611.677	107	5,717	
TOTAL		854.107	124	6.888	
* * * MULTIPLE C SOUID BY GEAR AREA TIME	LASS	IFICA	ΤΙ () 🗤 🔺	, o∳ A L Y ,	SIS ***
* * * * * * * * * * * * * *	* * * *	* * * * *	* * * * * *	* * * *	* * * * * * *
GRAND MEAN = 6.11			ADJUS Sted Indee	TED FÜR VENDENTS	ADJUSTED FOR INDEPENDENTS + COVARIATES
VARIABLE + CATEGORY	N	DEV"N	ETA DEV"	HETA	DEV" BETA
GEAR 1 OTTER 2 CHAIN 3 BUBHIN	40 44 41	.37 53 .20	.47 61 .19	,18	
AREA 1 2 3	42 43 40	.89 .72 -1.71	.87 .77 -1.74 .45	,46	
TIME 1 DAY 2 NIGHT	91 34	.21 57	,22 -,55 ,13	2 3 .1 4	
MULTIPLE R SUUARED Multiple r				.250 .500	

JAPANESE SUUID DATA, JAN, 19 Analysis of variance; six sp File noname (creation da	78 ECIES, C TE = 78	LASSICAL (/03/03.))N LN + 1		
* * * * * * * * * * A N A L Silhake By Gear Area Time	YSIS	OF V	ARIANC	E * * *	* * * * * * *
* * * * * * * * * * * * * *	* * * *	* * * * *	* * * * * *	* * * *	* * * * * * *
					0 T 0
SOURCE OF VARIATION		SUM OF	DF	MEAN SUUARE	F OF F
MAIN EFFECTS		321.023	5	64.205	33_639 _001
GEAR		144.806	2	12.403	47.912 .001
AKEA TIMF		2.269	1	2,269	1.189 .278
				-	
2-WAY INTERACTIONS		29,244	8	3.655	1.915 .965
GEAR AREA		14,999	4	2.201	1.153 .320
GEAR IIME Arfa Itme		9.330	2	4 665	2.444 092
		-			
3-WAY INTERACTIONS		4_698	4	1.174	-615 -655
GEAR AREA, TIME		4.598	4	1 = 1 / 4	•CT0 •CT0
EXPLAINED		354,965	17	20.880	10.940 .001
RESIDUAL		204.224	107	1.909	
TOTAL		559.190	124	4.510	
* * * MULTIPLE C Silmake By Gear	LASS	IFICA	TIÜN A	. N A L Y	515 ***
AKEA TIMF					
* * * * * * * * * * * * * * *	* * * *	* * * * *	* * * * *	* * * *	* * * * * * *
GRAND MEAN = 2.81			ADJUS	TED FOR	INDEPENDENTS
		UNADJU	STED INDER	ENDENTS	+ CUVARIATES
VARIABLE + CATEGURY	N	DEV"N	ETA DEV"	N BETA	DEV"N HETA
GEAR			8.	1	
1 JTTER	40	-1 40	 	L 5	
2 CHAIN X HOBBIN	41	.51	.7	7	
3 808814	~.	•	.49	.51	
AREA	/1 2	- 22	1	7	
2	43	1.49	1.5	2	
3	40	-1.37	-1.4	3 • 57	
TIME	01	- 13	- 0	8	
1 UAT D NIGHT	34	.35	.2	2	
G TAVIII			.10	.06	
				574	
MULTIPLE R SUUARED Multiple R				.758	

JAPA Anal File	NE (YS)	SE E S NC	S(0F 0N/	au F Ami	ID VAI E	D. RI	A T A A N ((C F	E J	JA S T I	N . 17	. 1 : 5 : D	9 P1 A	78 EC TE	1 E =	s,	, (71	CL/ 870	4 S S 0 3 J	51(/0]	C A I 3 • .	L)	ŰN	L!	v ·	+ :	L												
* *	* 1	* 1	t 1	•	* BY	★ C G	* * OD EAF Re4	к Д 2	١	4	. L		Y	S	I	S		n	F		v	A	R	I	A	Ν	С	t	*	*	*	*	*	*	*	* 1	* :	*
* *	* 1	k 7	, 1	ł i	* :	⊺ ★	1 4 E * 1	E 1	*	, J	c 🛪		k	*	*	*	×	*	*	*	*	*	*	*	*	*	*	*	¥	*	*	*	*	*	*	* :	* '	*
																	:	ទប	M	ÛF									ហា	EA	Ň				5	16	v 1	F
SOUR	CE	ÛF	- 1	γA	RI	A T	IU	4									S	الال	AR	ES			DI					S	JÚ	A R I	Ε		F			ŲΙ		F
MAIN	E	FFE	C '	t s														13	• 6	82			9	5				Å	2.	73	6	5	. 0	11		•	00	1
G	EAI JE	N.																11	8. ד	05 57			1	2 2					-	90. 67.	2 A	10		09 43		•	00. 20	ן ג
ī	ΙM	E																•	-2	44				1						24	4	•	4	47		-	50	5
2=*4	Y	ī∖⊾	E	kΔ	٢٦	រត	NS											3	. 8	92				8						4 R	7		.8	91		•	52	,
6	EA	R			AR	ΕA												1	.6	13				4					•	40	3		.7	38		•	56	h
6	EA	R			TI.	ME												~	• 4	82				2					•	24	1	•	_4 _ A	42		•	54 1 5	4 2
μ		8			11	ЧC												e	••	εv				~					4 #	01	0	1	. . .	-		•		£.
3- n A	Y E A	IN' G	ΓE)	RA	CT		N S		Ŧ	г м 6								777	• 4	54 54				4 4					1.	86 86	4 4	1	5.4 5.4	13		•	ง1 61	1
c		n i			-	- 7			• •		-								• 7												_					•		
EXPL	IA.	NEI	J															25	•0	29			1	7					1.	47	5	ć	:.6	96	•	•	ដ្ឋា	1
RESI	υu	4L																58	• 4	28			10	7					•	54	6							
TOT	i L																	83	• 4	57			12	4					•	67	3							
* *	*		м	U	L	T	I	ρ	L	E	í	c	L	4	S	s	I	F	I	c	A	T	Ţ	0	ŧN		A	Ą,	A	Ŀ	Y	s	T	S		*	*	*
				-		C	ου																															
				15 1		i A	RE	R A																			·											
	•					Ţ	ΙM	E	•	_	. .				-										-										*		*	
* *	×	×	×	×	-	×	×	*	F	×	H		×	π	F		*	F							•	*	ſ		Î		ŕ	-	-	-				
GRA	ND	٩F	A N	=	:			• 3	3																۵	Ď.1	us	TF	Ð	FO	R	i.	4D. Tini) U S) E F	STE PEN	D DF	FU NT	IH `S
																			UN	AD	Ju	IST	ΕD		I	ND	ĒP	ËN	DE	N T	S		+ (:01	/ A H	Į A	TE	S
VAR	IAB	LE	+	C	A T	EG	OR	Y							ΝJ				DE	V	N	E	ΤA		D	Εv	ΡŇ		B	ET	Α	ļ	JEN	/ •• i	u	ħ	ΕI	Α
GEA	ĸ																																					
	1	ÚТ Сн	TE	R											40 44				_	. 4	2						42											
	3	30	88	١٨	1										41				-	. 0	5						06			_	_							
																						•	38							• 3	18							
ARE	A																																					
	1														42 43					••1	4						15											
	3														40					.1	1						09				7							
																						•	15)						• 1	2							
TIM	Ë,	(3. e	v												۰.				_							_	<u>م ع</u>											
	2	N I I N	т GH	т											71 34				-	. 1	0					-	07											
																						•	9.0							• 0)5							
MUL	TIF	LE	R	. 5	390	JAF	₹ED																							16	4							
MUL	118																													, - i								

	(CREATION	DATE =	7	8703	/03.]												
* * * * * * *	* * * A N A Haddock	LYS	IS	0	F	V	A R	I	AN	С	E ,	* *	*	*	*	* :	* 1	*
81	GEAN																	
* * * * * * *	TIME * * * * * *	* * *	* *	* * *	* *	*	* *	*	* *	Ħ	*	* *	*	*	*	*	*	×
				SU	M OF							MEA	N				S	1
SOURCE OF VARI	ATION			ទធម	ARES		D	F			SG	UAR	£		ŕ			I
MAIN EFFECTS				78	.503			5			15	.70	1	11		37		
GEAR				54	./41			2			1/		1	10	0	57		
AREA				41	./04			2			20	•07	-	1.2	2.4	37		
TIME					.059			1				-03	9		• 0	24		
2-WAY INTERACT	IDAS			29	.800			8			3	.72	5	è	2.7	61		ç
	E A			22	. 735			4			2	• 1 3		4	•• • •	50		
GEAR TI	ME			E	. 3471			2			2	-49 -67	1	ſ	د. ورا	07 80		
HREA 11	, ** T <u>L</u>			2				-			-		-	•				
3-WAY INTERACT	IONS			37	.031			4			9	.25	18 . P		э . А . н	62 67		
GEAR AN	CA IIME			/ د	.051			4			4	• 6 3	0	5	3 6 ()	02		
EXPLAINED				145	.335	i	1	7			8	.54	9	é	5.3	36		
RESIDUAL				144	.364		10	7			1	. 34	9					
TOTAL				289	.699	•	12	4			5	• 33	56					
*** MUL	T I P L E Haddock	CLA	s	S I F	FI (C A	т	[0	N N	Ą	Ŋ	A	L١	f S	1	S		1
BY	GEAR										•							
	TIME																	
* * * * * * *	* * * * * *	* * * *	*	* * *	k 11 1	* *	r 🛪 1	k #	* 1	*	*	*	* 1	t #	*	*	*	y
GRAND MEAN =	.72										* = -		6 0		AD	JUS	STE	ĒD
					UNA	oju	STE	>	INE	DEP		J F DEN	TS		+ (COV	V A H	¥.] Af
VARIABLE + CA	TEGORY		N		DEV	нŅ	ΕT	A	DEN	/ M N		вE	TA		0E	V "	v	
GEAR																		
1 OTTER			40			51				50								
2 CHAIN			44		'	72			-	,70								
3 BOBBIN			41		•	28	-			56								
							• 30	5				•	35					
AREA																		
1			42			71			-	,71								
2			45		- •!	10			•	.02								
د			4 V		•	70	.3	,	•	. 12			38					
TIMF																		
1 DAY			91		= _ 1	01				01								
2 NIGHT			34			04			- 2	03								
					2		.0;	2				٠	01					
	LAREN											2	71					

•

JAPANESE SQUID D ata, Jan. Analysis of v ariance; s ix File Noname (creation	1978 Species, classical on Ln + Date = 78/03/03.)	1
* * * * * * * * * * A N A Plaice By gear Area The	LYSIS OF VARI	A N Ç E * * * * * * * * * * * * * * *
: [ME * * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * * *
SOURCE OF VARIATION	SUM OF Squares DF	MEAN SIGNIF Square f of f
MAIN EFFECTS Gear Area Time	66.123 5 55.456 2 10.413 2 1.503 1	13.225 20.195 .001 27.728 42.343 .001 5.207 7.951 .001 1.503 2.295 .133
2-WAY INTERACTIONS GEAR AREA GEAR TIME AREA TIME	12.694 8 9.346 4 3.175 2 .440 2	1.587 2.423 .019 2.337 3.568 .009 1.588 2.425 .093 .220 .336 .716
3-WAY INTERACTIONS GEAR AREA, TIME	2.608 4 2.608 4	.652 .996 .413 .652 .996 .413
EXPLAINED	81.426 17	4.790 7.314 .001
RESIDUAL	70.068 107	.655
TOTAL	151.494 124	1.222
* * * MULTIPLE PLAICE BY GEAR AREA TIME	CLASSIFICATIU	N ANALYSIS ***
* * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * *
GRAND MEAN ≢ .85	UNADJUSTED	ADJUSTED FOR ADJUSTED FOR INDEPENDENTS INDEPENDENTS + COVARIATES
VARIABLE + CATEGORY	N DEV"N ETA	DEV"N BETA DEV"N BETA
GEAR 1 OTTER 2 CHAIN 3 BUBBIN	$\begin{array}{cccc} 40 & .73 \\ 44 &84 \\ 41 & .19 \\ .60 \end{array}$.75 85 .19 .61
AREA 1 2 3	42 .13 43 .22 4037 .23	.14 .25 42 .26
TIME 1 DAY 2 NIGHT	9109 34 .23 .13	07 .18 .10
MULTIPLE R SQUARED Multiple R		.436 .661

.

JAPANESE SQUID DATA, JAN. 1 Analysis of variance; six s File nuname (creation d	978 PECIES, C ATE = 78	LASSICAL 0 /03/03.)	N LN + 1		
+ + + + + + A N A J	YSTS	0 F V		L * * *	* * * * * * *
REDFISH BY GEAR				-	
AREA TIME					
* * * * * * * * * * * * * *	* * * *	* * * * *	* * * * * *	* * * *	* * * * * * *
				- E A C.	STONTE
SUURCE OF VARIATION		SUM OF	DF	SUUARE	F OF F
MAIN EFFECTS		28.201	5	5.640	8.078 .001
GEAR		4.780	2	2,390	3.423 .036
AREA		19.65/	2	7.029	4.169 .044
1 Tiut		E • 714			
2-WAY INTERACTIONS		17.847	8	2.231	3.145 .003
GEAR AREA		4.825	4	2 854	4.087 .019
6848 IIME Arfa Time		8.385	2	4,193	6.005 .003
			-		
3-WAY INTERACTIONS		9,268	4	2.317	3.319 .015
GEAN AREA, TIME		A*500	4	2.317	
EXPLAINED		55,316	17	3.254	4.650 .001
RESIDUAL		74.709	107	.698	
TUTAL		130.026	124	1.049	
* * * MULTIPLE (REDFISH		IFICA	TION A	N A L Y	515 ***
BY GEAR Area					
TIME * * * * * * * * * * * * *	* * * * *	* * * * *	* * * * * *	* * * *	* * * * * * *
GRAND MEAN = .36					ADJUSTED FOR
		IN AD TH	ADJUS RTEN INNER	TED FOR FNDENTS	+ CEVARIATES
VARIABLE + CATEGORY	N	DEV"N	ETA DEV"A	HETA	DEV"N BETA
GEAR					
1 OTTER	40	.02	.05		
2 CHAIN	44	24	25))	
3 806814	41	. 24	.19	.19	
1	42	28	20	,	
2	43	.56	.55	5	
3	40	51	34	. 39	
TIME					
	91	11	0	,	
2 NIGHT	34	.29	.29	5	
			.17	•15	
MULTIPLE & SQUARED				.217	
MULIICE A					