International Commission for

the Northwest Atlantic Fisheries

ANNUAL MEETING - JUNE 1978
 Capelin investigations in the waters of f southern Labrador (Division 2J)
 and on the north Newfoundland Bank (Division 3k) in the Autumn of 1977

by
V. S. Bakanev and A. S. Seliverstov PINRO, Murmansk, USSR

SUMMARY

The article includes data on the capelin distribution, their age and size compositions and biomass in the waters off South Labrador (2J) and the North Newfoundland Bank (3K) obtained as result of a research trip of R/V "Persey III" in October I977.

INIRODUCTION

An instrument estimate of the capelin stock was completed from board RN "Persey III" in the South Labrador and the North Newfoundland Bank waters ($2 J$ and 3K) throughout the perwod from I9 up to 28 October. An instrument estimate was performed simultaneously with investigations on distribution, behaviour and age-size structure of the capelin stock like it was in I974 - I976. The autumn 1977 appeared to be the most unfavourable for organization and conduction of investigations compared to the period 1974 - 1976. Due to anomalous hydrologic conditions, capelin were keeping much closer to I2-mile territorial waters of Canada and one can suppose, therefore, that a considerable part of the capelin stock (apparently, much greater than that one in I974 - I976) could not be taken into account.

MATERTAL AND METHOD

The method of investigations conducted in the autumn I977 did not distinguish from that one accomplished in I975 - I977 (Bakanev, Seliverstov, Serebrov, I976; Klochkov, Seliverstov, Zaferman, I977; Seliverstov, Kovalev, I976; Serebrov, Bakanev, Kovalev, I975).

Studying of the capelin distributi n, the age - size structure of their stock, their behaviour and acoustic - photogrammetric survey were performed throughaut the area from $50^{\circ} 20^{\prime}$ N up to $53^{\circ} 30^{\prime} \mathrm{N}$ along the territorial waters of Canada.

Underwater photographs were treated and interpreted according to the methods used for these purposes earlier (Bakanev, Seliverstov, Serebrov, I976; Truskanov, Zaferman, I973; Truskanov, Shcherbino, I963, I966), see Table I.

The capelin density was estimated for the intervals as follows: O.I - IO.0; IO.I - 29.0; 25.I - 50.0 and $50 . I \quad x \quad I 0^{6}$ spec./mile ${ }^{2}$ (Fig. I, Table 2).

DISCUSSION OF RESULTS OBTAINED AND THE CONCLUSION

It is known that in October capelin come to an end with their feeding in the Southern Labrador and the Northern Newfoundland Bank, the fish are groupping into shoals and begin to shift slowly southwards.

Inveatigations conducted during the last four jears showed that the fish stock is only partially covered by an echometric survey: that part is distributed easterner of 20 -mile costal zone. Annually, a conaiderable number of capelin are inaccessible for counting, and this part of fish stock is not stable throughout some Jears, it depends on hydrological conditions of the year (Bakanev at al., I976; Klochkov at all., I977).

It was concluded that is case of the intensity relaxation of the ashore branch of the cold Labrador Current, capelin are keeping
closer to the shore and migrate to their feeding and growing grounds further to the north, to the area lying behind the Hamilton Bank. In the years with low heat content in water masses, the area of the capelin feeding and growing enlarges eastwards and the autumn caper In concentrations become more accessible for their quantitative counting.

In autumn I977, small capelin concentrations began to migrate in the midst of October. Fish moved southwards along the territorial waters limit of Canada with speed of IO - I5 miles per day.

The results of the echo survey by R/V "Persey III" and the analysis of the commercial vessels operations showed that capelin were encountered I8 miles easterner the Canadian coast but they formed no stable concentrations during the period of investigations. Fish migrated southwards with great speed by small shoals, those were registered along the Canada coast in a narrow area stretching more than 200 miles (Fig. I).

At the same time, the Canadian researchers reported on great capelin concentrations in the Notre Dame Gulf, approximately, in IO miles from the coast over I40 m - I50 m depth.

Fiverything given above teatifies to the fact that in autumn 1977, the character of the capelin distribution distinguished greatly from that one of the previous years. The tendency of f1sh to distribute much closer to the coast compared to that one in I974 - I976 period depended on some intensity relaxation of the Labrador Current. The hydrological section 81 (Seal Island) showed that the water temperature appeared to be 2° higher in the ashore branch of the Labrador Current compared to three previous years (Table 3). 1 pecuIarity of great importance in the capelin behaviour was found out during the echometric surveg. The matter is that the capelin distribubed partially sporadically throughout a large distance without forming their schoals. Fish could not be recorded by the echo sounders at such a character of their distribution. Control trawlings gave catches from 50 kg up to 500 kg , and they were made without any traces of the echo sounding recorders, and the photo camera attached to the trawl registrated only singular fish individuals or,
raraly, little schoals including $2-3$ specimens.
Sumarizing the above facts, it is possible to conclude that in 1977, the method of the standard acoustic - photo survey of the capelin stock was not effective due to an extreme heat content of water masses of the ashore branch of the Labrador Current. That could be explained be the factors as followss
I. The fish distributed muoh closer to the coset than previously including the territorial waters of Canada.
2. The fish migrated with great speed by separate schoals through the territorial waters and along them.
3. The capelin concentrations were partially so dispersed that the fiah could not be recorded by the echo sounders. All these unfavourable factors given above did not allow to perform a representative estimate of the capelin biomass and abundance in the waters of the South Labrador (2J) and the North Newfoundland Bank (3K) in autumn 1977.

The ontimated abundance and biomass are considerably less than the actual ones. A discounted part of the capelin stock should be much higher in autumn I977 than previously due to the facts mentioned above.

Data obtained with help of the underwater photosurvey testify to the fact that the density of the capelin stocks was much greater in autumn I977 than in I974 - I976 (Berebrov, Bakanev, Kovalev, I975; Bakanev, Seliverstov, Serebrov, I976; Klochkov, Seliverstov, Serebrov, I977), see Table I.

It appeared to be impossible even to outline the area occupied by the fish with application of the usual method due to the dispersed concentrations of a part of fish. It appears to be reasonable to perform a trawl survey in addition to the acoustio - photogrammetric survey to estimate the abundance of the dispersed capelin, but, the volume of work would be much greater, thus, to maintain the representativity of the survey, it would be necessary to have an additional number of vessels.

To avotd the situation like that one given in the paper, the survey of the capelin in the watera of the South Labrador and the

North Newfoundland Bank should cover Canada's territorial waters as well, and several vessels should work simultaneously according to the united program.

In autumn I977, a rich I973 year - olass dominated in the catches taken in the waters of the South Labrador and the North Newfoundland Bank, the mean weight of an individual in the stock was 27.1 g (Fig. 2). The comparison of the dynamies of 1969 and 1973 year classes which dominated in I97I - I977 stock (the first year - class - in I971 - I973 and the second one - in I976 - I977) testifies to the fact that these year - classes were comparable by their abundance. It is a matter of interest to compare a relative dynamics of the abundance of these populations, as the fishery intensity was less while exploiting I969 year - class compared to that one while exploi-. ting I973 year - class.

The total allowable catch was introduced from 1974 in the South Labrador Area and the North Newfoundland Bank (2J and 3K), when the catch reached 136 thousand tons. The total allowable catch was determined as high as 300 thousand tons by ICNAF for I9af - I977. But, troughout all the years of the fishery, the total number of the fiah removal by the international fishery was less than quotas established by ICNAF (Table. 4).

Table 4 shows that the catch was determined not by the values of quotas, but, by commercial purposes, besides that, by specific operations within 200-mile economical Canada's zone and by unfavourable for the foreign fishery dislocation of the fishery operations (Fig. I).

In I972-I974, the Pishery intensity was 42 percent less (the total catch was 309 thousand tons) than in I975 - I977 (the total. catch was 553 thousand tons) in Div. $2 J+3 \mathrm{~K}$.

Nevertheless, the dynamics of the age/size compositions of I969 year - class appeared to be very similar to that one of I973 year class relating I977 (Fig. 2 and 3). Even in I977, in apite of a high intensity of the fishery, the number of the big - sized fish was greater than in I974.

If the effect of the fishery on the stock was too high, the
natural dynamics of the year - classes would be obligatory disturbed. The rest of 1973 year - class dominating in the stock must be less than that one of I969 in 1973 at a grown Pishery intensity in I977. The decrease in number of the elder jear - classes of fish in the stock effected by an intense fishery is a well - known phenomenon investigated thoroughly enough relating many commercial fish species.

Everything given above allows to consider that no reduction in the abundance and the biomass of capelin late in I977 was observed. Δs result of the acoustic - photogrammetric survey, there was obtaineó the biomass equal to 0.86 mln tons, that was some 0.12 and 0.19 mln tons less compared to the values got in I976 and I977. The estimate obtained can not be interpreted as the reduction of the fish abundance even in the absolute values, especially if one take into account the abnormal capelin distribution and their behaviour in autumn I977. The value of the possible annual removal can be recommen ded as high as 0.3 mln tons, $1 . e$. it will be at the level of 1975 relatively 1977 period (if one take into account ansion life circle of this fish species, a rapid restoration of the fish abundance as $\sqrt{\text { the }}$ result of the entering into the stock of a rich recruitment, the absence of data confirmed the effect of the fishery on the natural dynamics of the age - size composition of the fish and only a partial counting of their stock).

REFRR世NC世S

BAKANEV V.8., SELIVRRSTIOV A.S., SEPEBROV L.I., I976. Preliminary instrument estimate of abundance and biomass of capelin off South Labrador and the North Newfoundland Bank (Divs. 2 J and 3 K). Intern. Comm. Northw. Atlant. Fish. Res. Doc. 76/VI/54: I-I5.

KHOCHKOV D.N., SELIVERSIOV A.S., SKAREBROV I.I., I977.
Fstimate of capelin Stocks in the South Labrador and Northern Newfoundiand Bank Areas in Autumn, I976 (Divs, 2 J and 3 K). Intern. Comm. Northw. Atlant. Fish. Res. Doc. 77/VI/33: I-II.

KOVALEV S.M., SELLIVERSTOV A.S., ZAFRRMIAN M.I., I977. Gize of a spawning stock on the Grand Newfoundland Bank (Div. 3nt in I976 (South - eastern stock). Intern. Comm. Northw. Atiant. Fish. Res. Doc. 77/VI/32: I-g.

SRLIVERSIOV A.S., KOVALEV S.M., I976.
Size of the capelin spawning stock on the Grand Newfoundland
Bank. Intern. Comm. Northw. Atlant. Fish. Res. Doc. 76/VI/5Is I-I4。

SEREBROV L.I. BAKANETV V.S., KOVALINV S.M. I975.
The conf of Newfoundland capelin stock. Intern. Comm. Northw. Atalnt. Fish. Res. Doc. 75/7: I-I4.

TRUSKANOV M.D., SHCEFRRBINO M.N., I963
Acoustic estimation of the abundz.ace of fish concentration. "Rybnoe Khozyaistro", N 6: 52-58.

TRUSKANOT M.D., SHCHERBEINO M.N., I966. Acoustic estimation of the degree of fish "Rybnoe Khozyaistvo" I 8t 38-42.

TROSKANOV M.D., ZAFRRMAN M.I., I973. Peculiarities of the procedure to determine fish abundance in the scattering layers by the hydroacoustic method.
"Rybnoe Khozyaistvo" N IO: I-44.

Table I. Mean density of the capelin concentrations according to underwater photosurvey in I974 - I975.

Table 2. The capelin abundance and biomass (Divisions 2J+3K).

- 9 -

Table 3. Water temperature along the section 8A in 1974-1977.

Year	$D \mathrm{p}$ ¢ h , m	
	0-200	50-200
I974	0.27	-0.02
I975	0.70	0.51
I976	0.36	0.20
I977	2.34	2.52

Table 4. Actual catches and total allowable capelin catches in 1972-1977.

A counry beginning the capelin fishery for the
firet time is allowable to take Io thousand
tons annually. The total allowable catch is 300
thousand tons.
XX ICNAF Circular letter $78 / 10$. The catch - through
November inclusive.

Fig. 1. The route of R / V "Persey $I I I^{\prime}$ and the capelin distribution in October 1977.
Density gradation in spec./mile ${ }^{2}$
I. 0.1 - IO.O 10^{6}
2. 10.1 - $25.0 \cdot 10^{6}$
3. $25.1-50.0 \cdot 10^{6}$
4. $50 \cdot 10^{6}$

