International Commission for

the Northwest Atlantic Fisheries

ANNUAL MEETING - JUNE 1978
Stock assessment of roundnose grenadier in the Northwest Atlantic
by
H. Borrmann
Institut für Hochseefischerei und Fischverabeitung Rostock-Marienehe, German Democratic Republic

Introduction

This paper intends to present the latest estimates of fishing mortalities, atock sizes and suatainable yields for fishing mortality levels of $\mathrm{F}_{\mathrm{o} .1}$ and $\mathrm{F}_{\text {max }}$. of roundnose grenadier in Subareas 2 and 3 and Statistical Area 0 and Subarea 1. Opposite to the assessment in 1976 (Bormann, 1977) this estimates are based on more complete and suitable data.

Materials and Methods
The mean fishing mortalities and atock sizes were calculated by means of the cohort analysia (Pope, 1972) of age compositiong.

Yield calculations were made using the Beverton and Holt (1957) yield equation, solved by the incomplete Beta function.

All assessments were made using two values of natural mortality, $M=0.1$ and $M=0.2$.

The catch by number and age group was calculated in the following way: First, the calculation was made for every year, where age compositions were available (the age compositions for SA 2 and 3 consisted of data of SA 2 for 1969, 1971, 1973, 1974 and 1976 and for Statiatical Area 0 and SA 1 of data for 1969, 1971, 1973, 1974, 1975 and 1976). The mean weights of the catch were dalculated by using length compoaitions and mean weighta per length group as used in 1976. After that the mean age compositions of the catch by number of the available years were calculated and raised to the mean catch of the years 1967-1976 for SA 2 and 3 and of the years 1968-1976 for Statistical Area 0 and SA 1, in order to take into consideration all years with catch.

As teminal fishing mortalities $F=0.3$ and $F=0.2$ were used according to the natural mortalitiea and the results of the cohort analysia carried out 1976.

- 2 -

Calculations of yield per recruit were made using values of W_{∞}, K and t_{0} as determined from mean welght-at-age data from the years 1969, 1971, 1976 and for SA 1 additionally from 1975. The growth parameters are as follows:

Area	chipo	K	t_{0}
Subarea 2	2.392	0.0512	-3.094
Stat. Area $0+$ Subarea	8.958	0.0263	-1.934

(The corresponding growth curves are in Fig. 1). The mean age of recruitment to the fishery (t_{p} ') was obtained from the expresaion given in Beverton and Holt (1957), using the F values from the cohort analysie:

$$
t_{p}^{\prime} \approx \bar{t}_{s}=\sum_{y=1}^{2} t_{y} \cdot \Delta F_{y} / \sum_{y=1}^{3} \Delta F_{y}
$$

It was 13.5 years in SA 2 and 3 and 12,0 years in Statistical Area 0 and SA 1 where the age of full recruitment to the fishery was 15 and 14 years respectively. The age of recruitment to the etock (t_{p}) was taken as 3 years and the maximum age (t_{λ}) as 25 and 27 respectively as theae ages comprise the range of the available age compoaition data.

The suatainable yielda of $F_{0.1}$ and $F_{\text {max }}$ for each management area were estimated by multiplying the number of age 3 fish in the atock (as determined from cohort anslyais) by the corresponding Y / R values of the yield-per-recruit curves.

Resulte
Subareas 2 and 3
The mean total catch by number was 48.494 million fish at a mean catch of 27,960 tons in 1967-1976. The catch composition and the resulta of the cohort analysia are given in Table 1. The calculated stock aizes are $1,357 \mathrm{milli}$ f for $\mathrm{M}=0.1$ and $3,611 \mathrm{million}$ fish for $M=0.2$. The mean F-values at $M=0.1$ are 0.042 and 0.334 for the stock as a whole and for the fully-recruited atock (ages 15^{+}) respectively. The correeponding values at $M=0.2$ are 0.016 and 0.255 .

The yiald-per-recruit curves for $M=0.1$ and $M=0.2$ (Fig. 3) are. both flat-topped with $F_{\text {max. }}$ at 1.2 and greater than 2.0 respectively. In the latter case $F_{\text {max. }}=2.0$ was used. The reaulta of the yield calculations are as follows:

	$\begin{gathered} \text { Natural } \\ \text { mortality } \\ (M) \end{gathered}$	$\begin{gathered} \text { Fishing } \\ \text { mortality } \\ \text { (F) } \end{gathered}$	Yield per recruit(Y / R) (kg)	Suetainable yield (Y) (000 t)
Fishing				
at $F_{0.1}$	0.1 0.2	0.3 0.4	0.149	$26 \cdot 1$
Fishing				
at $\mathrm{F}_{\text {max }}$.	0.1	1.2 a)	0.158	27.7^{\prime}
	0.2	$2.0^{\text {a }}$	0.053	37.0

a) $F_{\text {max. }}$ actually>2.0

Statistical Area 0 and Subarea 1
The mean total catch by number was 18.835 million fish at a mean catch of 6,942 tons in 1968-1976.

D 3

The catch composition and the results of the cohort analysis are given in table 2. The calculated stock sizes are 427 million fish for $M=0.1$ and 1,053 million fish for $M=0.2$. The mean F-values at $M=0.1$ are 0.052 and 0.330 for the stock as a whole and for the fully-recruited stock (ages 14^{+}) respectively. The corresponding values at $M=0.2$ are 0.021 and 0.239 .
The yield-per-recruit curves (Fig. 4) for $M=0.1$ and $M=0.2$ have a maximum at 0.3 and greater than 2.0 respectively. In the latter c. case $F_{\max }=2.0$ was used. The results of the yield calculations are ae follows:

	Natural mortality (M)	Fishing Mortality (F)	Yield per recruit (kg)	Sustainable yield (y) $(000 \mathrm{t})$
Fishing	0.1	0.2	0.118	6.9
at For	0.2	0.3	0.036	7.5
Fishing	0.1	$0.3 \mathrm{a})$	0.120	7.0
at Fax	0.2	2.0	0.042	8.7

a) $F_{\max }$ actually >2.0

Discussion
The results of the cohort analysis are not very different from those of 1976 (Borxmann, 1977). The fishing mortalities are nearly the game. The stock sizes for Subareas 2 and 3 are somewhat lower and for Statistical Area 0 and Subarea 1 higher. The differences may be due to different age compositions of the catch where the compositions used now are the more realistic ones (Fig. 2 a and b). Moreover, the total number of the catch changed because for this analysis all years with catch were considered whereas in the past only those years were taken into account where biological data were available. The used mean catch per year diminniehed from 31,726 tons to 27,960 tone for Subareas 2 and 3 and increased from 6,609 tons to 6,942 tons for Statistical Area 0 and Subarea 1.

The values of fishing mortalities are still on the level of $\mathrm{F}_{0.1}$ though they are somewhat higher and the values of $F_{0.1}$ are lower with the exception of one value. The reason for the changed 'shape of the yield-per-recruit curves and the lower yield-per-recruit values is related mainly with the new growth parameters which are more suitable because they are derived from growth in weight data and from more data.

According to the lower yield-per-recruit valuea and the changed number of age 3 fish in the stock (Table 1 and 2) the austainable yields at $F_{0.1}$ and $F_{\text {max. }}$ decreased. But neverthelese the anual average catches of 27,960 tons in Subareas 2 and 3 and of 6,942 tons in Statiatical Area 0 and Subarea 1 are in the range of the sustainable yields at $F_{0.1}$, which amount to 26,100 tons $-30,700$ tons and 6,900 tons - 7,500 tons respectively in dependence on the value of natural mortality.

Though the size of the biological material has been increased, it was not eufficient to carry out a VPA in order to get fiahing mortalities and stock aizes by the year and to make a catch prognosie related to the actual stock condition. Beaides the results for Subdivisions 2 and 3 are only preliminary, because biological data from Subdivision 3 were not available and there are come indications obtained by comparing length compoaitions and mean lengthe (Savvatimsky, 1977) that the stock is different from that in Subdivision 2.

Acknowlegement

I am grateful to Mre. S. Möller for the age-readings and the preliminary analysis of former eamplea.

References

Beverton, R.J.H.., and S.J. Holt 1957. On the dynamica of exploited fish populations. Fish. Invest., Lond.(2) 19: 533 p .

Borrmann, H. 1977. Stock Assegament of Roundnose Grenadiex in the Northwest Atlantic. Int. Comm. Northw. Atlant. Fish. Sel. Pap., No. 2, p.45-53

Pope, J.G. 1972. An inveatigation of the accuracy of virtual population analyais uaing cohort analysia. Res. Buil. int. Comm. Northw. Atlant. Fish., No. 9, p. 65-74

Savvatimsky, P.I. 1977. Prospecta of roundnose grenadier fishery in the Northwest Atlantic. Ann. Meet. int. Comm. Northw. Atlant. Fish. 1977, Res. Doc. No. 30, Serial No. 5055 (mimeographed).

Table 1: Roundnose grenadier in Subareas 2 and 3 stock aize and fiahing mortality (F) for two of natural mortality (M) from cohort analyais

$\mathrm{M}=0.1$				$\mathrm{M}=0.2$	
$\begin{aligned} & \overline{\text { Age }} \\ & \text { Eroup } \end{aligned}$	$\begin{array}{r} \text { Catch } \\ \left(10^{-3}\right) \\ \hline \end{array}$	$\begin{array}{r} \text { Stock } \\ \left(10^{-6}\right) \end{array}$	F	$\begin{gathered} \text { Stock } \\ \left(10^{-6}\right) \end{gathered}$	F
3	30.0	175.255	. 00015	698.448	. 00004
4	59.9	158.545	. 0004	571.815	. 00016
5	79.8	143.396	. 0006	468.109	. 00016
6	109.8	129.671	. 0009	383.134	. 00028
7	272.8	117.224	. 0025	313.626	. 0010
8	318.0	105.806	. 0031	256.529	. 0014
9	780.0	95.432	. 0087	209.741	. 0041
10	1959.9	85.607	. 0244	171.016	. 0127
11	2470.0	75.594	. 0350	138.243	. 0199
12	3528.6	66.049	. 0509	110.949	. 0358
13	5194.6	56.405	. 1019	87.645	.0678
14	6785.9	46.095	-168	67.057	-119
15	7724.4	35.252	. 262	48.762	. 192
16	5649.5	24.549	. 277	32.933	. 210
17	4596.8	16.838	. 338	21.851	. 264
18	3.588 .0	10.863	. 427	13.731	. 341
19	1.886 .5	6.416	. 370	7.395	. 302
20	1540.1	4.011	. 517	4.839	. 433
21	1009.5	2.164	. 674	2.568	. 570
22.	694.7	0.998	1.317	1.189	1.037
23.	121.0	0.242	. 747	0.345	. 491
24	33.5	0.104	1.868	0.173	. 762
25	i10.9	0.014	. 3	0.066	. 2
${ }_{15}{ }^{3+}$	48494.2	1356.530 101.452	$.042^{\text {a }}$) $.334^{\text {a }}$)	$\begin{array}{r}3610.814 \\ 134.453 \\ \hline\end{array}$	$.016^{\text {a }}$ $.255^{\text {a }}$

a) Average F weighted by atock size

```
Table 2: Roundnose grenadier in Subarea 1 and Statistical Area 0: Stock size and fishing mortality (F) for two values of natural mortality (M) from cohort
``` analysis
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{\(\mathrm{M}=0.1\)} & & \multicolumn{2}{|c|}{\(M=0.2\)} \\
\hline \[
\begin{aligned}
& \text { Aze } \\
& \text { group }
\end{aligned}
\] & Catch
\[
\left(10^{-3}\right)
\] & \[
\begin{aligned}
& \text { Stock } \\
& \left(10^{-6}\right)
\end{aligned}
\] & F & \[
\begin{aligned}
& \text { Stock } \\
& \left(10^{-6}\right)
\end{aligned}
\] & F \\
\hline 3 & 21.7 & 58.558 & . 0005 & 207.890 & . 00016 \\
\hline 4 & 43.6 & 52.963 & . 0009 & 170.187 & . 00028 \\
\hline 5 & 94.0 & 47.880 & . 0021 & 139.298 & . 00077 \\
\hline 6 & 121.1 & 43.233 & . 0030 & 113.963 & . 0011 \\
\hline 7 & 644.5 & 39.003 & . 0175 & 93.196 & . 0076 \\
\hline 8 & 732.9 & 34.677 & . 0225 & 75.719 & . 0107 \\
\hline 9 & 976.9 & 30.679 & . 0341 & 61.330 & . 0178 \\
\hline 10 & 1406.8 & 26.830 & . 0568 & 49.329 & . 0321 \\
\hline 11 & 1297.9 & 22.938 & . 0613 & 39.115 & . 0374 \\
\hline 12 & 1658.4 & 19.520 & . 0936 & 30.850 & . 0612 \\
\hline 13 & 2637.0 & 16.084 & . 189 & 23.757 & . 131 \\
\hline 14 & 2948.4 & 12.045 & . 297 & 17.065 & . 212 \\
\hline 15 & 1885.9 & 8.094 & . 281 & 11.304 & . 204 \\
\hline 16 & 1493.2 & 5.529 & . 334 & 7.548 & .247 \\
\hline 17 & 1053.4 & 3.583 & . 370 & 4.829 & . 276 \\
\hline 18 & 693.4 & 2.240 & . 393 & 3.000 & . 295 \\
\hline 19 & 476.8 & 1.367 & . 457 & 1.829 & . 340 \\
\hline 20 & 287.6 & 0.784 & . 488 & 1.066 & . 354 \\
\hline 21 & 124.6 & 0.435 & . 358 & 0.612 & . 254 \\
\hline 22 & 125.6 & 0.276 & . 653 & 0.389 & . 442 \\
\hline 23 & 51.7 & 0.130 & . 544 & 0.205 & . 327 \\
\hline 24 & 40.1 & 0.068 & . 961 & 0.121 & . 457 \\
\hline 25 & 11.2 & 0.024 & . 691 & 0.063 & . 221 \\
\hline 27 & 3.0 & 0.011 & . 353 & 0.041 & . 0853 \\
\hline 27 & 5.1 & 0.007 & . 3 & 0.031 & 0.2 \\
\hline \(1{ }^{3}{ }^{+}+\) & 18834.8 & \[
\begin{aligned}
& 426.958 \\
& 34.591
\end{aligned}
\] & \[
\begin{aligned}
& \left..052^{a}\right) \\
& \left..330^{\mathrm{a}}\right)
\end{aligned}
\] & \[
\begin{array}{r}
1052.737 \\
48.101
\end{array}
\] & \[
\begin{array}{ll}
.021 & \text { a) } \\
.239 & \text { a) }
\end{array}
\] \\
\hline
\end{tabular}
a) Average \(F\) weighted by stock aize

Fig.1. Growth curves for roundnose greriadier

Fig. 2a. Mean age composition of roundnose grenadier cafches (weighted mean)

Fig. 2 QMeanage composition of roundnose grenadier catches in 1973 and 1974 (unweighted mean)

Fig. 3. Yield-per-recruit curves for roundnose grenadier in Subareas 2and 3

Fig. 4 Yield-per-recruit curves for roundnose grenadier in Subarea 1 and statistical area 0```

