# International Commission for 

the Northwest Atlantic Fisheries

Serial No. 5227
(D.c.3)

ICNAF Res. Doc. 78/VI/59

ANNUAL MEETING - JUNE 1978<br>Status of the cod stock in Division 3NO

by
C. A. Bishop and R. Wells

Newfoundland Biological Station
St. John's, Newfoundland

Introduction
Cod catches in this area declined from a high level of 227,000 tons in 1967 to 24,300 tons in 1976 when the TAC was 43,000 tons. Seasonally adjusted catch rates of Spanish pair trawlers declined from 1.5 tons/hour in 1971 to 0.4 tons per hour in 1975. Canadian survey results showed that the stock in $1973-76$ was considerably lower than in 1971-72. A general production model indicated that the stock was at a relatively low level in 1975. There was some indication that effort on this stock in 1976 was lower than in 1975. Soviet young fish surveys indicated that the 1973 and 1974 year-classes were somewhat better than average.

At the 1977 Assessments Subcommittee meeting in 1977, the preceding data led to the advice that catches of 30,000 tons and 20,000 tons in 1978 could correspond approximately to fishing at $F_{M S Y}$ and $2 / 3$ $F_{\text {MSY }}$. A TAC of 15,000 tons was set for 1978 by the Commission to allow rapid rebuilding of the stock.

## Abundance estimates of cod in Division 3 N

The results of a Canadian survey of Division 3 N were added to the series beginning in 1971 and yearly abundance estimates were calculated by the 4 methods shown in Bishop (1977). See Tables 1-3. A fifth estimate is shown in Table 4. Abundance estimates of strata of the same depth range were added and the average abundance per square mile was adjusted to the total area of the depth range.

From summary table 5 , it was apparent that the abundance of the stock in 1977 has shown marked improvement. Regressions of seasonally adjusted Spanish catch/hour against survey abundance indices were calculated and the parameters are shown in Table 5.

Estimation of effort in 1977

Catch and effort supplied by Spain for 1977 for the entire Spanish catch was: catch $=8901$ tons, days fished $=1119$, catch/day $=7.95$ tons. In 1976, catches and effort for PT class 4 comprised 48 and $58 \%$ respectively of the total Spanish catch in Divisions 3NO. If the same proportions of catch and effort were obtained in 1977, the catch/day for PT class $4=6.58$ tons.

In 1975 and 1976, the number of hours fished per day was 14.55. Using this relationship, the catch/ hour in 1977 was 0.452 tons. The relationship between the catch/hour of PT-4 vessels and the seasonally adjusted catch/hour was 1.16 seasonally adjusted $C / h o u r-.0738$ ( $\mathbf{r}=.97$ ). The seasonally adjusted $\mathrm{C} / \mathrm{hour}$ implied is about . 453.

In 1977, the provisional catch in Divisions $3 N 0$ was 14,700 tons, and the effort is therefore estimated at 32,450 hours.

## General Production Model

The regression of catch/hour on effort (Fig. 1) with the inclusion of the 1976 datum gave a fitted line and consequently a yield curve (Fig. 2) similar to those constructed at the 1977 Assessments Subcommittee meeting.

The 1976 point on the curve is very much different from that of 1975 and if catch rates in 1979 were at the 1976 level in 1977 and 1978 , would yield a catch at $2 / 3$ effort MSY of 55,000 tons.

The 1977 point on the curve similarly would imply a catch at $2 / 3$ effort MSY of 25,000 tons.

The large discrepancy between the 1975 , 1976 and 1977 points is difficult to explain but possible reasons may include one or more of the following:
(1) the seasonally adjusted catch/hour used may not be a good indicator of biomass
(2) incoming year-classes have been unexpectedly strong
(3) the catch/hour index used may be subject to very wide variation.

## Age Composition in 1977

The age composition of 1977 plotted on a semi-logarithmic scale is shown in Fig. 2. The $Z$ value derived is . 55 implying an average $F$ of .35 has been operating on the stock for the past number of years. $F$ values calculated in 1977 for the years 1974 and 1975 were considerably higher (Res. Doc. 78/VI/17, Addendum I).

## Conclusion

The stock of cod in Divisions 3NO in 1977 is depressed below the level that could support the equilibrium level of catch at $2 / 3$ effort MSY. Because of great variability from year to year in the catch rate data, it is difficult to project with confidence a yield for 1979.

Table 1. Cod abundance estimates (numbers in thousands) from stratified random cruises - Division 3 N . Also data obtained using Method 4.

| Strata | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | Convers ion factors <br> Method 4 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 359 |  | 845 | 639 |  |  | 4709 | 1359 | 1.386 |
| 360 |  | 1559 |  |  | 2302 | 3425 | 4211 | 2.386 |
| 361 | 6894 | 5961 | 858 | 904 | 3624 | 723 | 5670 | 2.124 |
| 362 | 2432 | 12160 | 1012 | 1466 | 431 | 1021 | 5830 | 1.000 |
| 373 | 18511 | 3940 | 146 | 426 |  | 76 | 946 | 1.434 |
| 374 | 1390 | 180 | 180 |  | 140 |  | 1607 | 0.273 |
| 375 | 3701 | 3936 | 410 | 1435 | 6617 |  | 7474 | 3.311 |
| 376 |  | 810 | 39 |  | 1294 | 113 | 3601 | 0.767 |
| 377 |  | 1096 | 147 | 613 | 413 |  | 2800 | 0.418 |
| 378 | 586 | 3778 | 472 | 1683 |  |  | 657 | 0.456 |
| 380 | 12 | 139 | 756 | 80 |  |  | 21 | 0.164 |
| 381 | 865 | 1259 | 1391 | 123 | 149 |  | 3123 | 0.466 |
| 382 | 146 | 5252 | 20 | 152 |  | 23 | 2521 | 0.178 |
| 383 | 69 | 1546 | 48 | 23 |  | 16 | 307 | 0.048 |

Table 2. Cod abundance estimates (numbers in thousands) from stratified randon cruises in Division 3 N using Methad 1.

| Strata | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 359 | 2145 | 845 | 639 | 545 | 933 | 4709 | 1359 |
| 360 | 3078 | 1559 | 617 | 782 | 2302 | 3425 | 4211 |
| 361 | 6894 | 5961 | 858 | 904 | 3624 | 723 | 5610 |
| 362 | 2432 | 12160 | 1012 | 1466 | 431 | 1021 | 5830 |
| 373 | 18511 | 3940 | 146 | 426 | 2190 | 76 | 946 |
| 374 | 1390 | 180 | 180 |  | 140 | 122 | 1607 |
| 375 | 3701 | 3936 | 410 | 1435 | 6617 | 872 | 7474 |
| 376 | 1492 | 810 | 39 | 379 | 1294 | 113 | 3601 |
| 377 | 1212 | 1096 | 147 | 613 | 413 | 227 | 2800 |
| 378 | 586 | 3778 | 472 | 1683 | 689 | 296 | 657 |
| 380 | 12 | 139 | 756 | 80 | 81 | 35 | 21 |
| 381 | 865 | 1259 | 1391 | 123 | 149 | 262 | 3123 |
| 382 | 146 | 5252 | 20 | 152 | 730 | 23 | 2521 |
| 383 | 69 | 1546 | 48 | 23 | 162 | 16 | 307 |
| Average | 3038 | 3033 | 481 | 615 | 1411 | 851 | 2862 |
| Sp. |  |  |  |  |  |  |  |
| $151-500$ | 1.493 | 0.924 | 0.769 | 0.583 | 0.402 | 1.019 |  |

Table 3. Cod abundance estimates (numbers in thousands) from stratified random cruises in Division 3N using Method 2.

| Strata | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | Area |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 359 | 1304 | 845 | 639 | 258 | 540 | 4709 | 1359 | 421 |
| 360 | 9265 | 1559 | 1387 | 1832 | 2302 | 3425 | 4211 | 2992 |
| 361 | 6894 | 5961 | 858 | 904 | 3624 | 723 | 5610 | 1853 |
| 362 | 2432 | 12160 | 1012 | 1466 | 431 | 1021 | 5830 | 2520 |
| 373 | 18511 | 3940 | 146 | 426 | 3233 | 76 | 946 | 2520 |
| 374 | 1390 | 180 | 180 |  | 140 | 717 | 1607 | 931 |
| 375 | 3701 | 3936 | 410 | 1435 | 6617 | 1226 | 7474 | 1593 |
| 376 | 4642 | 810 | 39 | 918 | 1294 | 113 | 3601 | 1499 |
| 377 | 310 | 1096 | 147 | 613 | 413 | 77 | 2800 | 100 |
| 378 | 586 | 3778 | 472 | 1683 | 178 | 107 | 657 | 139 |
| 380 | 12 | 139 | 756 | 80 | 149 | 89 | 21 | 116 |
| 381 | 865 | 1259 | 1391 | 123 | 149 | 140 | 3123 | 182 |
| 382 | 146 | 5252 | 20 | 152 | 830 | 23 | 2521 | 647 |
| 383 | 69 | 1546 | 48 | 23 | 865 | 16 | 307 | 674 |
|  |  |  |  |  |  |  |  |  |
| A |  | 3580 | 3033 | 536 | 1483 | 890 | 2862 |  |

Table 4. Cod abundance estimates (numbers in thousands) from stratified random research cruises in ICNAF Division 3 N using Method 5.

| Depth Range | Strata | 1971 | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0-30 | $\begin{array}{r} 375 \\ 376 \end{array}$ | 3,701 | $\begin{array}{r} 3,936 \\ 810 \end{array}$ | $\begin{array}{r} 410 \\ 39 \end{array}$ | 1,435 | $\begin{aligned} & 6,617 \\ & 1,294 \end{aligned}$ | 113 | $\begin{aligned} & 7,474 \\ & 3,601 \end{aligned}$ |
| Total <br> Total Strata Area (sq. míles) |  | 3,701 | 4,746 | 449 | 1,435 | 7,911 | 113 | 11,075 |
|  |  | 1,593 | 3,092 | 3,092 | 1,593 | 3,092 | 1,499 | 3,092 |
| 31-50 | 360 |  | 1,559 |  |  | 2,302 | 3,425 | 4,211 |
|  | 361 | 6,894 | 5,961 | 858 | 904 | 3,624 | 723 | 5,610 |
|  | 362 | 2,432 | 12,160 | 1,012 | 1,466 | 431 | 1,021 | 5,830 |
|  | 373 | 18,511 | 3,940 | 146 | 426 |  | 76 | 946 |
|  | 374 | 1.390 | 180 | 180 |  | 140 |  | 1,607 |
|  | 383 | 69 | 1,546 | 48 | 23 |  | 16 | 307 |
| Total <br> Total Strata Area (sq. miles) |  | 29,296 | 25,346 | 2,244 | 2,819 | 6,497 | 5,261 | 18,511 |
|  |  | $8,498$ | 11,490 | 8,498 | 8,498 | 8,296 | 10,559 | 11,490 |
| 51-100 | 359 377 |  | $\begin{array}{r} 845 \\ 1,096 \end{array}$ | 639 147 | 613 | 413 | 4,709 | 1,359 2,800 |
|  | 382 | 146 | 5,252 | 20 | 152 |  | 23 | 2,521 |
| ```Total Total Strata Area (sq. miles)``` |  | 146 | 7,193 | ${ }_{8}^{806}$ | 765 | 413 | 7.732 | 6,680 |
|  |  | 647 | 1,168 | 1,168 | 747 | 100 | 1,068 | 1,168 |
| 101-150 | 378 | 586 | 3,778 | , 472 | 1,683 |  |  | 657 |
|  | 381 | 865 | 1,259 | 1,391 | 123 | 149 |  | 3,123 |
| Total <br> Total Strata Area (sq. miles) |  | 1,451 | 5,037 | 1,863 | 1,806 | 149 |  | 3,780 |
|  |  | 321 | 321 | 321 | 321 | 182 |  | 321 |
| 151-200 | 380 | 12 | 139 | 756 | 80 |  |  | 21 |
| Total Strata Area (sq. miles) |  | 116 | 116 | 116 | 116 |  |  | 116 |
| TOTAL AREA PER DEPTH RANGE |  |  |  |  |  |  |  |  |
| 0-30 | 3,092 | 7,184 | 4,746 | 449 | 2,785 | 7,911 | 233 | 3,601 |
| 31-50 | 11,490 | 39,611 | 25,346 | 3,034 | 3.812 | 8,998 | 5,725 | 18,511 |
| 51-100 | 1,168 | 264 | 5,252 | 806 | 1,196 | 4,824 | 8,456 | 6,680 |
| 100-150 | 546 | 2,468 | 8,568 | 3.169 | 3,072 | 447 |  | 6,430 |
| 151-200 | 386 | 40 | 463 | 2,516 | 266 |  |  | 70 |
| TOTAL |  | 49,567. | 44,375 | 9,973 | 11,131 | 22,180 | 14,414 | 35,292 |

Table 5. Comparison of cod abundance estimates (numbers in thousands) in ICNAF Division 3 N using five different methods and values obtained from regressions of Spanish PT catch/hour on abundance estimates

| Year | Spanish PT <br> Catch/hour | Method 1 | Method 2 | Method 3 | Method 4 | Method 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1971 | 1.493 | 3,038 | 3,580 | 4,663 | 5,695 | 49,567 |
| 1972 | 0.924 | 3,033 | 3,033 | 9,060 | 3,776 | 44,375 |
| 1973 | 0.769 | 481 | 536 | 935 | 494 | 9,973 |
| 1974 | 0.583 | 615 | 708 | 1,185 | 987 | 11,131 |
| 1975 | 0.402 | 1,411 | 1,483 | 2,028 | 4,600 | 22,180 |
| 1976 | 1.019 | 851 | 890 | 872 | 2,182 | 14,414 |
| 1977 |  | 2,862 | 2,862 | 5,720 | 4,455 | 35,292 |
| Slope |  | .00019 | .00019 | .00013 | .000078 | .000014 |
| Intercept |  | .5603 | .5330 | .6575 | .6332 | .5051 |
| r |  | .5999 | .6611 | .5489 | .4264 | .6515 |
| Estimated c/hr 1977 | 1.104 | 1.077 | 1.293 | .9807 | .999 |  |

Table 6. Catch per hour (Spanish PT, 151-500 +) total catch and total effort expended in Division 3NO cod fishery.

| Year | Catch/hour | Catch | Effort (hrs) | Effort (4 year <br> moving average |
| :--- | :---: | :---: | :---: | :---: |
| 1960 | 1.298 | 79,677 | 61,384 |  |
| 1961 | 1.180 | 72,724 | 61,631 |  |
| 1962 | 0.921 | 34,984 | 37,985 | 49,644 |
| 1963 | 1.856 | 69,742 | 37,577 | 44,083 |
| 1964 | 1.647 | 64,461 | 39,138 | 42,255 |
| 1965 | 1.826 | 99,187 | 54,319 | 48,720 |
| 1966 | 1.706 | 108,919 | 63,845 | 72,559 |
| 1967 | 1.706 | 226,784 | 132,933 | 86,803 |
| 1968 | 1.722 | 165,511 | 96,116 | 92,854 |
| 1969 | 1.499 | 117,705 | 78,522 | 96,410 |
| 1970 | 1.429 | 111,561 | 78,069 | 84,325 |
| 1971 | 1.493 | 126,296 | 84,592 | 88,264 |
| 1972 | 0.924 | 103,371 | 111,873 | 94,781 |
| 1973 | 0.769 | 80,429 | 104,589 | 125,864 |
| 1974 | 0.583 | 73,379 | 109,886 | 113,053 |
| 1975 | 0.402 | 44,174 | 23,830 | 91,042 |
| 1976 | 1.019 | 24,283 |  |  |

B 6


Fig. 1. Relationship of catch/hour (seasonally adjusted PT) to effort (000's hours).


Fig. 2. Yield curves Division 3 NO cod.


Fig. 3 . Estimate of $Z$ from catch curve of cod in $3 N \varnothing$ in 1977.

