SPECIAL MEETING OF STACRES - FEBRUARY 1979

Abstract

Dorsal Mantle Length - Total Weight Relationships of Squid (Loligo pealei and Illex illecebrosus) from the Northwest Atiantic, off the Coast of the United States.

by
Anne M. T. Lange and Karen L. Johnson
National Marine Fisheries Service Northeast Fisheries Center

Woods Hole Laboratory
Woods Hole, Massachusetts 02543

ABSTRACT

Length-weight data were collected from the Northwest Atlantic, for two conmerctally important species of squid (Loligo pealei and Illex illecebrosus) during 9 research vessel cruises between 1975 and 1977. These deta, in total and by year, sex, season and area of capture, were fit to length-weight relationships of the form $W=a L^{b}$. Analysis of covariance indicate that differences between equations determined for each area for each species, and for each sex, year and season for Loligo, do exist. However, comparisons of sums of total empirical weight versus sums of total weight predicted by equations obtained for all data within a given set, indicate that the net results of using a single equation for each species is about as precise as using separate equations for each sex, area, season and year.

These equations are: $W=0.25662 L^{2.15182}$ and $W=0.04810 L^{2.71990}$, for Loligo and Illex, respectively.

Introduction

Two species of squid are of comercial importance off the northeastern United States, these are: Lolfgo pealei (the long-finned squid) and Illex fllecebrosus (the short-finned squid). Loligo is distributed prinarily from Cape Hatteras to the eulf of Maine with some seasonal occurrances in the Eulf of Maxico and as far north as New Brunswick (Sumers 1969). Illex
ranges frow Mewfoundland to Florida with conwercial concentrations from the Middle Atlantic area, near Baltimore Canyon, to Newfoundland (Squires 1957). Until the late 1960's these species were taken conmercially off the USA in quantfities, ranging from 400 to 5,000 metric tons (MT) per year (average 1,805 MT, 1930-1967). Comparable anounts of Illex were taken annually off Newfoundland by coastal Canadian fishermen. However, with development of international fisheries in these areas catches increased rapidly in the early 1970's, reaching 56,700 MT (Loligo and Illex) in 1973, off the USA and 80,600 MT (Illex) in 1977, off Canada.

The life history and population dynamics of these two squid species, especially Illex, are not fully understood. The relationship of growth in length to increase in weight can be used, in conjunction with length-frequency samples from the commarcial fishery, to convert catch in weight to catch in number. For rapid growing species, like squid, population size in numbers may be more appropriate than biomess in analyzing the status of the stocks. Mesnil (1977), Stumers (1971), and Squires (1967) present studies of the growth and life cycles of these species, but do not provide length-weight relationships. Mercer (MS 1973), provided length-weight functions for male and fenale Illex from Newfoundland waters, but these may not be appropriate for Illex off the US. Sinilar studies have not been made for Loligo.

The objectives of this study were to: (1) calculate dorsal mantle length total weight relationshtps for squid (Loligo pealei and Illex Illecebrosus) from the Northevest Atlantic, off the US coast; (2) analyze differences in length-weight relattonships from different areas, seasons, and years and by sex; and (3) detenmine the appropriate application of these relations to empirical data from the commercial fishery.

Methods and Materials
Samples of squid, both Loligo and Illex, for length-weight analysis, were collected from the Nova Scotian to Middle-Atlantic areas (Figure 1) during research vessel bottom trawl surveys conducted in 1975, 1976, and 1977 (Table 1). Standard bottom tows, based on a stratified random sampling. design (Grosslein 1969) were made and subsamples of each species of squidtaken from tows in a given strata were frozen whole and returned to the Northeast Fisheries Center, Woods Hole, for analysis. These were generally, random subsamples, but in areas or seasons when few indivicuals in the upper or
lowar size ranges were obtained, length stratifted random samples were used to ensure representation of the entire size range. The length data, therefore, do not represent an unbiased subsample of the survey catches.

Frozen samples were thawed prior to analysis. Dorsal mantle length was measured frow the apex of the tall fin to the anterodorsal protuberance, to the nearest (figure 2); total weight was measured to the nearest gram; and sex, meturity, and stomach content information was recorded. All data were audited and stored on computer files for statistical analysis.

The form of the length-weight relationships was assumed to be:

$$
W=A L^{b}
$$

where;
$\mathrm{W}=$ total weight (g),
L $=$ dorsal mantle length (cm),
and A and b * coefficients of regression.
Least squares regressions were fitted to the linearized form of this function: $Y=a+b x$ where; $\quad Y=\log _{e} W$,

$$
x=\log _{e} L
$$

$$
a=\log _{e} A
$$

and $b=$ coefficient of regression.
Various regressions were fitted, with the SPSS (1975) SCATTERGRAM subprogram, to combinations of the data, illustrating effects of sex, season, year, and area differences on the length-weight relationship. Pearson correlation coefficients (r) were calculated for each regression to measure the strength of the relationship, and the goodness of the fit of the calculated regression line to the expirical data.

One-may analyses of covariance were conducted using the program BNDPIV (BMDP, 1977), to deterwine the significance of dffferences between slopes and adjusted means of the various length-weight functions (Winer 1971).

Results

Data Base:

A total of 5,388 Loligo and 2,798 1llex were obtained from 9 cruises during the three year study period (1975-1977). Of this total 750 Lolfgo and 20 Illex were of indeterminable sex and not considered in this study. There were also 3,026 Loligo and 193 I1Iex which were damaged during the capture or
preserving process, proventing accurate measurenent of weight, these were also excluded from the analysis.

The number of individuals in any sample does not, necessarily, reflect the size of the survey catches or the relative abundance of either species in any area or season. This ts often a function of time avallable to separate and freeze the samples. Generally, however, both species are more avaflable in autumin than in spring, and while Illex may be taken in great quantities during the sumber, Loligo is usually too far inshore to be captured in an offshore survey. Loligo is most abundant in the area south of Cape Cod, and is only occasionally found north of Georges Bank, while Illex is generally more available frow southern New England and Georges Bank areas, wth signtficant catches also taken in the Gulf of Mafne and Nova Scotian areas. Examples of seasonal distributions of each species, from 1977 US surveys, are presented in Figures 3 (a, b).

Statistical Sumary:

Statistical sumaries of Loligo and Illex length and weight data are presented in Tabie 2. Lengths ranged from 2.1 to 42.5 cm for Loligo and from 4.8 to 45.0 cm for Illex, with an overall average of 17.0 cm and 22.3 cm , respectively. weights averaged 133 g and 243 g ranging from 4 to 752 g and frum 3 to 861, for Loligo and Lllex, respectively. Male Loligo were consistantly larger (mean lengths and weights) in all areas, seasons, and years, than female Loligo; while on the average, female Illex were larger than the males of that species.

Regression parameters (a and b), standard error or regression and Pearson correlation coefficients (r) for Loligo and Illex length-weight relations are presented in Table 3 (a and b, respectively), by sex and overall, for each year, season, and area. Correlation coefficients indicate that generally between 76 and 96% ($r^{2} \times 100$) of the variation between dorsal mantle length and total weight of Loltgo may be accounted for by these regression equations. The low value for the regression of females from sumer samples (64\%) may posstbly be explained by small sample size, and a narrow range of lengths. For Illex, between 41\% and 96% of the varlation is explained by the various regressions. The very low correlations for Illex in sone groups (all 1977 data, males in 1975 and 1976, and all data from Georges Bank, the Gulf of Maine, and Nova Scotia) indicate
that regression equations may not always be adequate for that species. However, examination of residuals indicated no systemattc departures from the fitted equations to laply a better model. Fitted regressions were plotted for visual comparisons of the various reiationships (Figures 4a-g, 5a-g).
. Comparison of the length-weight relationships of male versus female Loltge, for all samples, shows a difference in weight, by sex, through the entire length range (Figure 4a). This difference is also evident when considering the relationships in each area separately (Figure 4b). Generally, females less than about 13 cm are lighter than males of the same length, while females greater than about 17 cm are heavier than the males. Length-weight relationships by year (pooled over season and area, Figure 4c), and those by season (pooled over area and year, Figure 4d) also showed differences between sexes, again with fenaies less than $13-17 \mathrm{~cm}$ weighing less than males at the same lengths and those greater than that range weighing more. The sumer sample shows only a slight difference between sexes. Comparisons of length-weight Felactonshifsi by year; season, and area, for each sex separately and combined are show in Figure 4e-g. Differences in each category are more evident in the male than in the female samples. Individuals of a given length, for both sexes, were lightest in sumer, then'spring and heaviest in the autumn, though larger females were heavier in the spring than they were later in the year. The most robust males were from the Middle Atlantic and Southern Mew England areas, while females from Georges Bank and Southern New England were heavier at any given length than those from the other areas. The regressions for the Gulf of Maine are not given since the weight of only five Loligo were obtained.

Differences between the length-weight relationships of male and female Illex were not as consistant as those of Loligo. The overall Illex regressions (pooled over year, season, and area, Figure 5a) were visualiy inseparabie. Though great differences were exhibited in the spring (Figure 5b) and Nova Scotian samples (Figure 5c); the relationships from the other areas and seasons were stailar for each sex. Comparisons by year, season, and area, overall and for each sex separately are fllustrated in Figures 5emg. The greatest difference is exhibited by both males and females, among areas, where the Nova Scotian sanples had a nearly linear length-weight relationship ($b=0.827$ and 1.170 for males and females, respectively, and 1.242 overall).

Analyses of Covariance:
Analysis of covariance was used to test if observed differences in the regression equations of each spectes were statistically significant (Tables 4, 5). Differences between sexes were examined with tests of slopes and adjusted means, by pooling data over all years, areas, and seasons for each sex. Consistencies in these differences were checked by testing differences between sex within each season (data pooled over years and areas), within each area (data pooled over seasons and years), and within each year (data pooled over seasons and areas). Seasonal differences were tested, with pairwise tests of slopes and adjusted means for data combined over all areas, sexes, and years, for each season. Area and annual differences in slopes and adjusted means were tested with data pooled over years, sexes, and seasons, and over areas, sexes, and seasons, respectively.

Significant differences ($P<0.01$) were exhibited in slopes and adjusted means between male and female Loligo (Table 4a), indicating that overall, females were heavier than males of the same length. This difference was also evident during each season, though it was only significant ($P<0.01$) in the spring. Slopes were significantly different between sexes in most areas ($P<0.01$), but while adjusted mean weights for females were greater in all areas this difference was significant only in Southern New England and Nova Scotia. ($\mathrm{P}<0.01$). Significance was consistantly demonstrated in tests of slopes for each year ($P<0.01$). Tests of adjust means were also significant in 1975 and 1977 (females again heavier), but not in 1976.

Tests between seasons (Table 4b) showed significant differences ($P<0.01$) in adjusted means for each pair with heaviest individuals in autumn and lightest in summer. Significant differences were also evident in slopes between summer and autum ($P<0.05$).

Differences in Loligo length-weight regressions were also found between areas (Table 4c). Adjusted means were significantly different ($P<0.01$) between the Middle Atlantic and all areas and between Southern New England and Nova Scotia, generally decreasing from south to north (excluding the Gulf of Maine). Significance in both slopes and adjusted means were evident only between: the Middle AtIantic and Southern New England and between Southern Mew England and Nova-Scotia. Though the adjusted mean from Middle Atlantic samples was significantly greater than that of Southern England Loligo, the slope from
the latter was greater. Larger individuals (over 19 cm) from Southern New England, generally, weighed more than those of the same length from the Middle Atiantic, while the reverse was true for individuals less than about 19 cm.

Pafrwise comparisons between years produced significant results in tests of adjusted means, decreasing from 1975 to 1977. However, there was no significant difference in the slopes in any year. -

Differences in length-weight regressions for Illex were not as consistent as for Loligo. Tests of adjusted means and slopes between sexes (Table 5a) revealed significant differences ($P<0.01$) in the overall adjusted means (males heavier per unit length) but no significance in their slopes. When regressions by sex were compared within seasons, only sumer samples were significantly different in both adjusted means and slopes (males heavier). Comparisons between sex, within the five areas showed significance in both slopes and adjusted means on Georges Bank (males heavier) and in the Nova Scotian area (females heavier), while adjusted means were significantly different in Southern New England ($P<0.05$), Georges Bank ($P<0.05$), the Gulf of Maine ($P<0.01$), and Nova Scotfa ($P<0.01$). Dffferences between males and females within each year were also inconsistent. The adjusted mean of the males was greater than that of the females in each year, but this difference was only significant (P<0.01) in 1976. Significant dffferences in slope were found only in 1977 data, with females over about 20 cm heavier per unit length, than males.

Differences in length-meight regressions due to seasons (Table 5b) were not significant for Illex. However, tests of adjusted means and slopes between most pairs of areas were (at the $P<0.05$ level). Adjusted means were greatest in the Gulf of Maine, and less for Nova Scotia, Georges Bank, the Middle Atlantic, and Southern New England, respectively. Significance In adfusted meams at the $P<0.01$ level wore exhibited between: the Midde Atlantic and Mova Scotia; Southem New England and Georges Bank, the Gulf of Maine, and Mova Scotia; and Georges Bank and the culf of Maine. Tests of slopes were significant ($P<0.01$) for all comparisons except between: Middle Atlantic and Southem Mew England; Midde Atlantic and the Gulf of Maine; and Southern Nem England and the Gulf of Maine. Therefore, the length-weight regression for Illex from the Mova Scotian area was significantly different (both adjusted means and slopes) from all other areas, exhibiting an almost

Ifnear relationship. Ceorges Bunk Illex were also signiffeantly different than those from other areas, with individuals greater than 25 an weighing less than those of comparable lengths taken in other areas (except Nova Scotia).

There was a significant difference between the adjusted means in 1975 and 1976, with the mean in 1975 signiffcantly greater than in 1976. Tests of slopes revealed significant differences ($P<0.01$) between 1975 and 1977, and between 1976 and 1977 samples (Tabie 5d), however, there was no significance in tests of adjusted weans between those years.

Comparisons of total calculated versus total enpirical weights were made for each species, for all data and for various conhfnations of data (Table 6). Weights ware calculated on an individual basis from sampled lengths, sumed within length (cm) interval and then suared over all lengths. Percent differences were calculated between these values and those obtained by sumning the individual empirical weights for the data set. Predicted weights which are based on geometric means were consistently less than empirical weights, but these differences were very small, ranging from 0.08 to 6.60 percent for Loligo and from 0.17 to 5.62 percent for Illex. This indicates that the dorsal mantle length-total weight relationship produces relatively precise approxtmations of total empirical weight, and that the functions used for each species are fairly accurate representations of this relationship.

Discussion
Results of these analyses indicate that the weight of Loligo of a given size, differs significantly, depending on the sex of the individual. The consistency of this difference in tests within areas, seasons, and years is evidence that it is not merely a product of the statistical procedures employed. Major factors influencing differences between sexes, are the relative wefght of gonads, with mature ovaries heavier than fully developed testes; differences in rates of maturation, and differential feeding during different stages of maturation and at different sizes. This study also suggests significant seasonal differences in the length-weight relationship of Loligo. A possible explanation of this is that in spring larger individuals are more mature and, therefore, heavier than later in the year; whlle in summer the many individuals which are not yet mature begin to feed; so by autum individuals throughout the size range are heavier as a result of sumer feeding. Area and annual differences, also shown significant for Loligo, may possibly be explained by various physical and biological factors such as temperature, nutrients, and
avallability of food.
Differences in length-weight relationships for various groupings of Illex were less consistent than for Loligo. Overall, tests between sexes were not significant, except in sumer samples, possibly due to maturation of males, or differential feeding. Seasonal and annual differences were not significant for Illex, but area dffferances proved to be important. As with Loligo these are most likely due to physical and bfological factors such as temperatures, nutrients, and food availability.

Conclusions

This study points out that although differences in the length-weight relationships of Loligo (by sex, year, season, and area) and IIlex (by area), do exist, comparisions within categories of sums of total empirical weight versus sums of total weight predicted by equations obtained for all data within a given set, indicate that the net results of using a single equation for each species is approximately as precise as using separate equations for each aera, season, year, or sex. This implies that for purposes of predicting total numbers taken in a fishery from length frequency and total catch in weight data, a single equation, obtained from all samples is probably as accurate as applying different equations to catches from each aera or season. These equations are: $W=0.25662 L^{2.15182}$ and $W=0.4810 L^{2.71990}$, for Loligo and Illex, respectively. However, significant changes in this relationship, for these short lived species, could occur as a result of changes in environmental factors. To monitor any such future changes sampling done during surveys should continue with data reported by sex and area, and additional samples should be taken during the inshore fishery.

Literature Cited

Dixon, H. J. (ed.), and H. B. Brown. 1977. BMDP-77, Biomedical Computer Prograns, P-series. University of Calif. Press. Berkeley, Calif. 880 p. Grosslein, M. D. 1969. Groundfish survey program of BCF Hoods Hole. Coms. Fish. Ray. 31:22-35.

Mercer, M. C. NS1973. Length-weight relationship of the omanastrephid squid, Illex illecebrosus (Le Sueur). Annu. Meet. Int. Corms. Northw. Atlant. Fish. 1973, Res. Doc. No. 72, Serial No. 3024 (mimeo).

Mesmil, 8. 1977. Growth and life cycle of squid, Loligo pealei and Illex fllecebrosus, from the Northwest Atlantic. Int. Comm. Northw. Atlant. Fish., Sel. Pap. Mo. 2:55-69.

Mie, N. H., C. Hull, J. Jenkins, K. Steinbrenner, and D. Bent. 1975. SPSS, Statistical Package for the Social Sciences, 2nd ed. McGraw-Hill Book Co. New York. 675 pp.

Squires, H. J. 1957. Squid. Illex illecebrosus (LeSueur), in the Newfoundland fishing area. J. Fish. Res. Bd. Canada, 14(5):693-728.

Squires, H. J. 1967. Growth and hypothetical age of the Newfoundland bait squid, Illex iliecebrosus. Ibid. ,24(6):1209-1217.

Sumpers, H. C. 1969. Winter populations of Loligo pealei in the Mid-Atlantic Bight. Biol. Bull., 137:202-216.

Summers, W. C. 1971. Age and growth of Loligo pealei, a population study of the common Atlantic coast squid. Ibid., 141:189-201.

Winer, B. J. 1971. Statistical Principles in Experimental Design, 2nd ed. McGraw-Hill Book Co., New York. 907 pp.

Table 1. Survey cruises used in Illex and Loligo length-weight relationship analysis.

Year	Cruise Code	Country	Season	Area
1975	753	USA	Spring	Mid-Atlantic - Nova Scotia
	758	USA	Autum	Mid-Atlantic - Nova Scotia
1976	762	USA	Spring	Mid-Atlantic - Nova Scotia
	766	USSR	Autuann	Mid-Atlantic - Nova Scotia
	767	USA	Autumathen	Mid-AtTantic - Nova Scotia
1977	771	USA	Spring	Mid-Atlantic - Nova Scotia
	774	USA	Sumber	Mid-Atlantic - Nova Scotia
	775	Japan	Summer	Mid-Atlantic - Georges Bank
	778	USA	Autuma	Mid-Atlantie - Nova Scotia

Table 2b. Length-weight sumary statistics for Hllexi by sex, and for each area, season, and year.

					Dors	mante?	ength					tal midht			
	Year	Season	Area	n	$\bar{\chi}$	S.D.	S.E.	Min.	Hex.	\bar{i}	S. ${ }^{\text {d }}$	S.E.	Hin.	Max.	
		All Lata		2605	222.5766	40.73985	0.7982071	0.00	450.0	243.19	100.8574	2.132819	3.0	861.0	
			Md-Atlantic	333	192.6877	31.55191	1.729034	75.0	254.0	164.1892	71.72276	3.930386	8.0	391.0	
			So. Men England	217	192.6069	43.09842	2.925711	49.0	285.0	168.9309	86.65753	5.892696	4.0	430.0	
			Goorges mank	379	215.0607	25.76859	1.323644	120.0	450.0	220.4617	58.66674	3.008372	26.0	397.0	
			Guif of Maine	77	223.5594	14.558965	1.662631	161.0	250.0	258.052	60.58708	6.904531	87.0	373.0	
			Mova Scotia	68	213.8236	28.77963	3.490043	55.0 128.0	277.0	215.2647	47.823876	5.799496	50.0	402.0	
	All	Spring	All	43	112.8235	26.97751 19.74397	$\begin{aligned} & 4.626604 \\ & .9668655 \end{aligned}$	122.0	241.0 269.0	118.6471	51.7903 69.33192	8.881963 2.906497	47.0	253.0 430.0	
		Autum		623	202.0610	39.55093	1.584575	49.0	450.0	195.488	83.51697	2.346037	4.0	429.0	
	75	All ${ }^{\text {a }}$	All	237	196.1266	38.63312	2.60949	92.0	285.0	186.7722	93.99959	6.105929	15.0	397.0	
	76			185	190.3297	44.57156	3.276966	49.0	265.0	171.8811	87.65227	6.444323	4.0	428.0	1
	71			652	210.9018	25.09465	. 9827825	120.0	450.0	204.4985	61.08788	2.392385	26.1	430.0	N
>															
$\stackrel{\sim}{\omega}$	All	All					. 9770589		343.0						
	A.	AI	Mid-Atlantic	362	222.8149	44.52104	2.339974	80.0	343.0	245.8232	325.4576	6.593907	10.0	794.0	
			So. Mow England	268	225.8552	47.19168	2.882691	52.0	311.0	252.5933	133.1323	8.132356	4.0	861.0	
			Georges Bank	558	242.7867	29.46974	1.247553	82.0	301.0	290.2581	99.05467	4.193318	11.0	738.0	
			Gulf of Matne	165	252.5162	18.81023	1.464374	185.0	316.0	330.3696	90.3768	7.035824	78.0	713.0	
			Moya Scotie	158	252.2975	28.24924	2.247388	110.0	303.0	315.9810	74.4052	5.919369	139.0	523.0	
	All	Spring	All	17	188.0588	48.78841	11.83293 1.220907	80.0 139.0	266.0 290.0	146.1176 2473452	117.7810 92.63647	28.56609	10.0	408.0 547.0	
		Summer		556 938	231.1799	28.78857	1.220907 1.34416	139.0	290.0 343.0	241.3452 295.8582	92.63647 120.4033	3.928661 3.931305	61.0 4.0	547.0 861.0	
	75	Autum	All	938 219	241.5821 219.543	41.17207 47.2823	1.344316 3.195042	52.0 82.0	343.0 316.0	295.8582 244.9178	120.4033 132.1029	3.931305 8.926682	4.0 11.0	861.0 713.0	
	76	A11	All	304	242.523	44.75668	2.566972	52.0	343.0	305.6777	131.5025	7.542185	4.0	. 861.0	
	77	All	All	988	239.2834	31.87256	1.014001	80.0	303.0	279.8787	100.0517	3.183069	10.0	' 738.0	

Fable 3a. Degreasion peramaters and statistics for dorsal mantle length (ca), and total waight (g) relationshids of Lolige, by sax, area, ceason, and year

Area	Seation	Year	Sex	Intarcept (a)	$\begin{aligned} & \text { Slope } \\ & \text { (b) } \end{aligned}$	Std. arror of b	$\begin{aligned} & \text { Antiloge } \\ & \text { of a } \end{aligned}$	Correlation coefficient (r)
All	A11	All	All	-1.36015	2.15182	0.2861	0.25662	0.9526
			Majas	-0.86949	1.97528	0.3196	0.41917	0.9108
			Femalas	-1.78605	2.32364	0.2038	0.16762	0.9447
		1975	All	-1.41009	2.18743	0.2833	0.24169	0.9594
			Males	-0. 85092	1.98020	0.3303	0.42702	0.9118
			Femiles	-1.68916	2.27017	0.2221	0.20410	0.9416
		1976	$A 11$	-1.23862	2.10357	0.2691	0.28978	0.9461
			Malas	-0.23259	1.76347	0.3192	0.79248	0.8128
			Femles	-2.20362	2.45497	0.1196	0111040	0.9744
		1977	Al1	-1.61564	2.19236	0.1612	0.19876	0.9712
			Males	-1.60928	2.17691	0.1547	0.20023	0.9779
			Females	-2.16486	2.41658	0.1507	0.11477	0.9574
	Spring	Al1	A11	-1.38547	2.14418	0.2736	0.25021	0.9689
			Malos	-0.88955	1.96453	0,3023	0.41084	0.9332
			Females	-2.0265\%	2.40412	0.18585	0.13179	0.9670
	Sumar		All	-0.78138	1.87046	0.16041	0.46777	0.9522
			Males	-0.68210	1.79805	0.1639	0.55872	0.9568
			Femalas	-0. 89154	1.91773	0.1658	0.41002	0.8009
	Autum		A1!	-1.38983	2.18390	0.2711	0.24912	0.9358
			Mines	-0.93193	2.01763	0.3290	0.39379	0.8917
			Femples	-1.39656	2. 19463	0.2230	0.24745	0.9247
Mid-Atlantic			All	-1.04605	2.05558	0.2803	0.36132	0.9193
			Males	-0.97119	2.02414	0.3154	0.37863	0.9164
			Females	-1.37391	2.18067	0.2196	0.25312	0.9262
So. New England			All	-1.77585	2.29771	0.1844	0.16934	0.9737
			Males	-1.24814	2.10368	0.2528	0.28704	0.9305
			Females	-2.48431	2.48431	0.1762	0.08338	0.9542
Georges Bank			All	-1.31404	2.11827	0.3566	0.26873	0.9556
			Nales	-0.26577	1.73782	0.4096	0.76585	0.8755
			Females	-1.99225	2.41504	0.1798	0.13639	0.9539
Gulf of Maine			All Hales Femalos	$\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$				
Nova Scatia			Al1	-1.26702	2.06714	0.2491	0.28167	
			Males	-1.01588	1:95655	0.2098	0.35208	0.9506
			Fenales	-1.98178	2.36422	0.2637	0.13782	
(1) Sample size	00 sasil	fit	assion.			-		

Table 3b. Dagrassion paramatars and statistics for dorsal mantla length (cry) and toteliweight (g). relationships of Lllex by sex! 'area, saason', and year.

Area	Season	Year	$\begin{array}{r} \text { n11 } \\ \text { Spx }^{1} . \end{array}$	Intricept	Slope (b)	Std. error of b	$\begin{aligned} & \text { Antilog } \\ & \text { of a } \end{aligned}$	Correlation coefficient (r)
All	All	All	A11'	-3.03444	2.71990	'0.2479	1) 0:04810	0.9259
			Hhies	-2.90355	2.68514	0.2783	1 0.0 .0483	0.8901
			Femalies	-3.12432	2.74348	0.2114	0.04397	0.9272
		1975	Al1	-3.60800	2.91776	0.2262	0.02711	0.9547
			Malas	-3.86325	3.01297	0.2407	0.02100	0.9423
			Females	-3.40628	2.84306	0.2054	0.03316	0.9607
		1976	A11	-3.48898	2.86430	0.2482	0.03053	0.9654
			Males	-3.24850	2.79844	0.3193	0.03744	0.9382
			Famales	-3.78275	2.95017	0.1834	0.02276	0.9678
		1977	Al1	-2.04101	2.40036	0.2281	0.12990	0.8489
			Males	-1.09567	2.09151	0.2596	0.33432	0.7115
			Females	-2.49809	2.54442	0.2166	0.08224	0.8693
	Spring	All	All	-3.43632	2.84766	0.2506	0.03218	0.9299
			Malas	-1.93149	2.32096	0.2554	0.14493	0.8101
			Females	-3.87840	2.98569	0.1965	0.02068	0.9782
	Sunaer		A11	-3.85026	2.98298	0.1601	0.02127	0.9154
			Males	-5.54897	3.55229	0.1796	0.00389	0.8523
			Females	-3.65625	2.91409	0.1719	0.02586	0.9134
	Autum		All	-2.90048	2.67682	0.2719	0.05500	0.9295
			Males	-2.71526	2.62456	0.3189	0.06619	0.8961
Md-Atlantic			Females	-2.95402	2.68939	0.2310	0.06213	0.9266
Mid-Atlantic	All		All	-3.25968	2.79140	0.24742	0.03840	0.9309
			Males	-3.06027	2.73143	0.3067	0.04688	0.8579
			Females	-3.36896	2.82290	0.2186	0.03443	0.9465
So. New England			All	-3.64833	2.91003	0.2046	0.02603	0.9743
			Malas	-3.59821	2.90213	0.2285	0.02737	0.9658
Georges Bank			Females	-3.72612 -2.19814	2.92964 2.45559	0.1792 0.2213	0.02409 0.11101	0.9716
			Malas	-1.24068	2.15026	0.2345	0.28919	0.7160
			Fenalas	-2.71228	2.61320	0.1067	0.06639	0.8678
Gulf of Maine			$A 11$	-3.39896	2.84990	0.1466	0.03341	0.8756
			Males	-4.77169	3. 31502	0.1426	0.00847	0.8520
			Females	-6.11873	3.37266	0.1291	0.00598	0.8937
Nova Scotia			Males	$\begin{aligned} & 1.67461 \\ & 2.82347 \end{aligned}$	1.24241 0.82687	0.2160 0.2002	5.33671 16.83517	0.7191
			Fomales	1.95943	1. 16965	0.1956	7.09528	0.6426

Table 4a. Results of analyses of coverfance of adjusted mans and slopes of Loligo length-welght regression equations between sexes: all seasons, areas, and years conbinedt by season (areas and years pooled); by area (seasons and years pooled); and by year (seasons and areas pooled).

(i) saple size- in the culf of Maine was inadequate for proper analysis.

$$
\begin{aligned}
& \text { P<0.01 = Stgnificant at } 1 \% \text { level } \\
& \text { - } P<0005=\text { Significant at } 5 \% \text { leve1 }
\end{aligned}
$$

-Fable-4bs Rasulte-of covariance ansiyses, tasts of adjustad mans and stopes-of Loliop length-meight regrassion equations between salsons (areas, years, and sexas pooled), and slaultantoous cerpartuns of adjusted means.

Spasens:	rest of chivend mans			Cetor 3100\%		
	F-Ratio	df!	Level of significance	F-Ratio	df	Level of signtfycance
Spring ys. suman	16.335	844	P<0.01	5.533	843	P-0.05
Spring vs. auturn	60.993	1629	P<0. 01	1.360	1628	n.s.
Summer vs. auturn	53.887	936	P<0.01	7.163	935	P<0.01

Comparisons of Adjusted Means

Adjusted Mean
Std. error

Spring	Sumper	Autumn
4.5358	4.4078	4.6422
0.0097	0.0307	0.0092

t-matrix and significance levels

Spring	\cdots		
Surmer	$\begin{aligned} & -3.983 \\ & P<0.01 \end{aligned}$	\rightarrow	
Auturin	$\begin{array}{r} 7.945 \\ P<0.01 \end{array}$	$\begin{aligned} & 7.316 \\ & P<0.01 \end{aligned}$	--

Table 4d. Resuits of analyses of covar-ance tests of adjusted mans and slopes of Loligo length-weight regression equations between pairs of years (sex, seasons, and areas combined), and simultaneous comparfsons of adjusted mans.

Comparison		lest of adjusted maans			Tost of slopes		
		F-fatio	df	Levet of significance	F-Ratio	df	Lavel of stgniff. cance
\because	1975 vs 1976	9.275	1501	P<0.01	2.401	1500	n.s.
-	1975vs1977	72.857	1304	P<0.01	0.175	1303	n.s.
--	1975 ms 1977	42.700	632	P<0.01	2.358	631	ก.5.

Table 5a. Results of anilyses of covariance of adjusted mans and slopes of [11ex length-weight regression equations by sex: all seasons, areas and years combined; by season (area and year pooled); by area (season and year pooied); and by year (season and area pooled).

Factor		lest of didusted means			rest of stopes		
		F-Ratio	df	Level of significance	F-Ratio	df	Level of significance
Overall : :		17.186	2611	$P<0.01$	1.353	2610	n.s.
Season	Spring	0.718	45	n.s.	3.599	44	$\text { ח. } 5 .$
Senson	Stramer	25.577	999	$\mathrm{P}<0.01$	30.168	998	$P<0.01$
\therefore	Autuma	7.020	1561	P<0. 01	1.140	1560	n.3.
Area	Mrdentlantic	2.690	692	7.5.	0.855	691	n.s.
	So. New England	5.415	482	$P<0.05$	0.160	481	n.s.
	Georges Bank	5.071	933	$P<0.05$	14.632	932	P<0. 01
	Gulf of maine	51.376	239	P<0.01	0.049	238	n.s.
	Move Scotia	42.314	223	$P<0.01$	4.409	222	$\mathrm{P}=0.05$
Year	1975	6.080	453	$P<0.05$	3.625	452	n.s.
	1976	8.495	486	$P<0.01$	3.361	485	n.5.
	1977	0.321	1666	ก.s.	25.583	1665	$p<0.01$

Pe0.01 $=$ Stgniffeant at 1% level
P<0.05 = Significant at 5s level
n.s. = nan-significant

- 17 -

Table 5h. Results of analyses of covariance testis of adjusted anans and slopes of Illex length-ntight rograssion equations betwen seasons (years. aroas and sexes pooied). Including simultaneous comparisons of adjusted

	Test of adjusted means			test of slopes		
	F-Ratio	df	$\begin{aligned} & \text { Signifi- } \\ & \text { cance } \\ & \text { level } \\ & \hline \end{aligned}$	F-Ratio	df	$\begin{aligned} & \text { Signiff- } \\ & \text { cance } \\ & \text { Jevel } \end{aligned}$
Spring-vs. sumar	0.909	1024	n.s.	1.410	1023	n.s.
Spring vs. autuma	1.822	1627	n.s.	0.993	1626	n.5.
Sumerivs. sutum	0.122	2548	n.s.	21.396	2547	P<0.01

Compart sons of adfusted means

	Spring	Sutaner	Autrun
Adjusted maan	5.3076	5.3470	5.3503
Std. error	0.0330	0.0076	0.0060
	tmatrix and significance levels		
Spring	促		-
Sunmer	$\begin{aligned} & 1.1640 \\ & \text { n.s. } \end{aligned}$	--	
Autumin	$\begin{aligned} & 1.2759 \\ & \text { n.s. } \end{aligned}$	$\begin{aligned} & 0.3449 \\ & \text { ח.s. } \end{aligned}$	-

Table 5c. Results of analyses of covariance, tests of adjusted mans and slopes of IIlex length-wetght regression equations by area, (sex, seasons and years pooled) and stmittaneous comparisons of adjusted means anong areas.

Table 5d:- Results of covariance analyses, tests of adjusted means and slopes of Illex length-weight regression equations between pairs of years (sexese seasons and areas combines), and simultaneous comparisons of adjusted means.

Factor	Comparison	Test of adjusted means			Test of slopes		
		F-Ratio	df	Level of significance	F-Ratio	df	Level of significance
Overall	1975vs 1976	7.208	960	$P<0.01$	0.917	959	n.s.
--	1975vs 1977	0.317	2132	n.s.	83.393	2131	$\mathrm{P}<0.01$
	1976vs1977	1.920	2167	n.s.	86.398	2166	$P<0.01$
Comparisons of adjusted means for years							
		1975	1976	1977			
Adjusted Std. erro	ean	$\begin{aligned} & 5.3681 \\ & 0.0113 \end{aligned}$	$\begin{aligned} & 5.3348 \\ & 0.0106 \end{aligned}$	$\begin{aligned} & 5.346 \\ & 0.005 \end{aligned}$			
t-matrix and significance							
-		--			-	.	
	1976	$\begin{array}{r} -2.1761 \\ P<0.05 \end{array}$	--				
	- 1977	$\begin{gathered} -1.6849 \\ n .5 . \end{gathered}$	$\begin{aligned} & 0.975 ؛ \\ & \text { n.s. } \end{aligned}$	--		:	
P<0.01 = Significant at 1% level P<0.05 = Significant at 5\% level n.s. $=$ non-significant							

Talle 6. Perceat overall arror in calculated smple mights versus ampirical dimple molghts using length-weight functions for all data; and for annual, seasonai] and area data by sex.

Arga	Season	Yair	Sax		$\begin{aligned} & 8 \\ & \text { error } \end{aligned}$		$\begin{aligned} & 8 \\ & \text { error } \end{aligned}$
All	All	All	A11	1709	1.78	2604	1.68
			Males	915 697	3.73	1073	2.08
		1975	Alt	1088	0.74	464	1.47
			Males	580	3.71	231	2.07
			femiles	424	1.48	219	1.67
		1976	All	${ }^{402}$	${ }_{2}^{1.05}$	499	1.70
			Females	178	2.62	304	1.40
		1977	111	219	1.01	1641	2.30
			Moles	123	1.28	651	0.17
	Spring	All	${ }^{\text {Femallas }}$	770	1.34	988 53	2.03
			Males	388	3.76	34	5.62
			Fenal les	299	1.41	17	3.25
	Summer		111	77	0.68	974	1.00
			Males	41	0.99	916	0.26
	Autumn		${ }^{\text {Females }}$	35 862	1.33 1.45	566 1577	1.24 1.96
			Males	486	4.04	623	2.63
			Fensies	363	1.50	--	--
Mid-Atlantic			All	703	1.75	702	2.07
			Males	409	2.07	333	2.14
			Femles	293	1.67	362	1.78
So. Mew England			${ }^{\text {All }}$	563 304	${ }^{0} \mathbf{0} 508$	495 217	1.75 2.63
			Females	243	1.11	268	4.83
Georges Bank			All	367	1.83	939	8.79
			Males	164	6.60	378 588	1.86
Guif of Maine			Fembles	124	${ }^{1.75}$	558 242	1.83 0.95
			Mates		2	77	0.95
			fomiles		(2)	165	0.73
Hova Scotia			111	71	2.53	226	2.46
			Males ${ }_{\text {Femsies }}$	35 35	1.97 5.11	68 158	1.76

(1) Parcent errore(Total empirical weight-total calculated weight)/total empirical weight.
(2) Saspicie size too small to fit regression.

Fig. 1. Survey strata (A) and areas (B) used in length-weight regression analyses for squid.

Fig. 2. Dorsal mantle length measurements for squid, Loligo and Illex.

Figure 3a. Distribution of Loligo pealei. Locations of stations where Loligo were taken, during 1977 U.S.A. bottom trawl surveys, by season.

Figure 4a. Loligo length-weight
relationships by sex: all areas, years and seasons.

colto soutmem men Evelamp, ench SEx ama comalned

Figure 4b. Loligo length-weight relationships by sex; each area: all seasons and years.

LOLIGO 1977. ERON SEX mill Comalmed

Figure 4c. Loligo length-weight relationships by sex, each year: all areas and seasons.

Figure 4d. Loligo length-weight relationships by sex, each season: all "areas and years.

Figure 4e. Loligo length-weight relations ships by season; each sex; all areas and years.

Figure 4f. Loligo length-weight relationships by area, each sex; all , seasons and years.

Figure 4 g . Loligo length-weight relation ships by year, each sex; all areas and seasons

C 3

Figure 5a. Illex length-weight relationships by sex: all areas, years and seasons.

Figure 5c. Illex length-weight relationo ships by sex, each year: all areas and seasons.

Figure 5d. Illex length-weight relationships by sex, each season: all areas and years.

Figure 5e. Illex length-weight relationships by season; each sex; all areas and years.

Figure 5f. Illex length-weight relationships by area, each sex; all seasons and years.

Figure 5g. Illex length-weight relationships by year, each sex; all areas and seasons.

