International Commission for

the Northwest Atlantic Fisheries

Seria] No. 5327

ICNAF Res. Doc. 79/II/4

SPECIAL MEETING OF STACRES - FEBRUARY 1979

Dorsal Mantle Length - Total Weight Relationships of Squid (Loligo pealei and Illex illecebrosus) from the Northwest Atlantic, off the Coast of the United States.

by

Anne M. T. Lange and Karen L. Johnson

National Marine Fisheries Service Northeast Fisheries Center Woods Hole Laboratory Woods Hole, Massachusetts 02543

ABSTRACT

Length-weight data were collected from the Northwest Atlantic, for two commercially important species of squid (Loligo pealei and Illex illecebrosus) during 9 research vessel cruises between 1975 and 1977. These data, in total and by year, sex, season and area of capture, were fit to length-weight relationships of the form $W = aL^b$. Analysis of covariance indicate that differences between equations determined for each area for each species, and for each sex, year and season for Loligo, do exist. However, comparisons of sums of total empirical weight versus sums of total weight predicted by equations obtained for all data within a given set, indicate that the net results of using a single equation for each species is about as precise as using separate equations for each sex, area, season and year.

These equations are: $W = 0.25662L^{2.15182}$ and $W = 0.04810L^{2.71990}$, for <u>Loligo</u> and <u>Illex</u>, respectively.

Introduction

Two species of squid are of commercial importance off the northeastern United States, these are: <u>Loligo pealei</u> (the long-finned squid) and <u>Illex</u> <u>illecebrosus</u> (the short-finned squid). <u>Loligo</u> is distributed primarily from Cape Hatteras to the Gulf of Maine with some seasonal occurrances in the Gulf of Mexico and as far north as New Brunswick (Summers 1969). <u>Illex</u> ranges from Newfoundland to Florida with commercial concentrations from the Middle Atlantic area, near Baltimore Canyon, to Newfoundland (Squires 1957). Until the late 1960's these species were taken commercially off the USA in quantities, ranging from 400 to 5,000 metric tons (MT) per year (average 1,805 MT, 1930-1967). Comparable amounts of <u>Illex</u> were taken annually off Newfoundland by coastal Canadian fishermen. However, with development of international fisheries in these areas catches increased rapidly in the early 1970's, reaching 56,700 MT (<u>Loligo</u> and <u>Illex</u>) in 1973, off the USA and 80,600 MT (<u>Illex</u>) in 1977, off Canada.

The life history and population dynamics of these two squid species, especially <u>Illex</u>, are not fully understood. The relationship of growth in length to increase in weight can be used, in conjunction with length-frequency samples from the commercial fishery, to convert catch in weight to catch in number. For rapid growing species, like squid, population size in numbers may be more appropriate than biomess in analyzing the status of the stocks. Mesnil (1977), Summers (1971), and Squires (1967) present studies of the growth and life cycles of these species, but do not provide length-weight relationships. Mercer (MS 1973), provided length-weight functions for male and female <u>Illex</u> from Newfoundland waters, but these may not be appropriate for <u>Illex</u> off the US. Similar studies have not been made for Loligo.

The objectives of this study were to: (1) calculate dorsal mantle length total weight relationships for squid (Loligo pealei and <u>Illex Illecebrosus</u>) from the Northwest Atlantic, off the US coast; (2) analyze differences in length-weight relationships from different areas, seasons, and years and by sex; and (3) determine the appropriate application of these relations to empirical data from the commercial fishery.

Methods and Materials

Samples of squid, both <u>Loligo</u> and <u>Illex</u>, for length-weight analysis, were collected from the Nova Scotian to Middle-Atlantic areas (Figure 1) during research vessel bottom trawl surveys conducted in 1975, 1976, and 1977 (Table 1). Standard bottom tows, based on a stratified random sampling design (Grosslein 1969) were made and subsamples of each species of squid taken from tows in a given strata were frozen whole and returned to the Northeast Fisheries Center, Woods Hole, for analysis. These were generally, random subsamples, but in areas or seasons when few individuals in the upper or

- 2 -

А З

lower size ranges were obtained, length stratified random samples were used to ensure representation of the entire size range. The length data, therefore, do not represent an unbiased subsample of the survey catches.

Frozen samples were thawed prior to analysis. Dorsal mantle length was measured from the apex of the tail fin to the anterodorsal protuberance, to the nearest mm (Figure 2); total weight was measured to the nearest gram; and sex, maturity, and stomach content information was recorded. All data were audited and stored on computer files for statistical analysis.

The form of the length-weight relationships was assumed to be:

W = AL^b

where;

W = total weight (g),

L = dorsal mantle length (cm),

```
and A and b * coefficients of regression.
```

Least squares regressions were fitted to the linearized form of this function: Y = a + bx

where;

Y = log_e W, X = log_e L, a = log_e A,

and b = coefficient of regression.

Various regressions were fitted, with the SPSS (1975) SCATTERGRAM subprogram, to combinations of the data, illustrating effects of sex, season, year, and area differences on the length-weight relationship. Pearson correlation coefficients (r) were calculated for each regression to measure the strength of the relationship, and the goodness of the fit of the calculated regression line to the empirical data.

One-way analyses of covariance were conducted using the program BMDP1V (BMDP, 1977), to determine the significance of differences between slopes and adjusted means of the various length-weight functions (Winer 1971).

Results

Data Base:

A total of 5,388 <u>Loligo</u> and 2,798 <u>Illex</u> were obtained from 9 cruises during the three year study period (1975-1977). Of this total 750 <u>Loligo</u> and 20 <u>Illex</u> were of indeterminable sex and not considered in this study. There were also 3,026 <u>Loligo</u> and 193 <u>Illex</u> which were damaged during the capture or

preserving process, preventing accurate measurement of weight, these were also excluded from the analysis.

- 4 -

The number of individuals in any sample does not, necessarily, reflect the size of the survey catches or the relative abundance of either species in any area or season. This is often a function of time available to separate and freeze the samples. Generally, however, both species are more available in autumn than in spring, and while <u>Illex</u> may be taken in great quantities during the summer, <u>Loligo</u> is usually too far inshore to be captured in an offshore survey. <u>Loligo</u> is most abundant in the area south of Cape Cod, and is only occasionally found north of Georges Bank, while <u>Illex</u> is generally more available from southern New England and Georges Bank areas, with significant catches also taken in the Gulf of Maine and Nova Scotian areas. Examples of seasonal distributions of each species, from 1977 US surveys, are presented in Figures 3 (a, b).

Statistical Summary:

Statistical summaries of <u>Loligo</u> and <u>Illex</u> length and weight data are presented in Table 2. Lengths ranged from 2.1 to 42.5 cm for <u>Loligo</u> and from 4.8 to 45.0 cm for <u>Illex</u>, with an overall average of 17.0 cm and 22.3 cm, respectively. Weights averaged 133 g and 243 g ranging from 4 to 752 g and from 3 to 861, for <u>Loligo</u> and <u>Illex</u>, respectively. Male <u>Loligo</u> were consistantly larger (mean lengths and weights) in all areas, seasons, and years, than female <u>Loligo</u>; while on the average, female <u>Illex</u> were larger than the males of that species.

Regression parameters (a and b), standard error or regression and Pearson correlation coefficients (r) for Loligo and Illex length-weight relations are presented in Table 3 (a and b, respectively), by sex and overall, for each year, season, and area. Correlation coefficients indicate that generally between 76 and 96% ($r^2 \times 100$) of the variation between dorsal mantle length and total weight of Loligo may be accounted for by these regression equations. The low value for the regression of females from summer samples (64%) may possibly be explained by small sample size, and a narrow range of lengths. For <u>Illex</u>, between 41% and 96% of the variation is explained by the various regressions. The very low correlations for <u>Illex</u> in some groups (all 1977 data, males in 1975 and 1976, and all data from Georges Bank, the Gulf of Maine, and Nova Scotia) indicate

that regression equations may not always be adequate for that species. However, examination of residuals indicated no systematic departures from the fitted equations to imply a better model. Fitted regressions were plotted for visual comparisons of the various relationships (Figures 4a-g, 5a-g).

- 5 -

Comparison of the length-weight relationships of male versus female Loligo, for all samples, shows a difference in weight, by sex, through the entire length range (Figure 4a). This difference is also evident when considering the relationships in each area separately (Figure 4b). Generally, females less than about 13 cm are lighter than males of the same length, while females greater than about 17 cm are heavier than the males. Length-weight relationships by year (pooled over season and area, Figure 4c), and those by season (pooled over area and year, Figure 4d) also showed differences between sexes, again with females less than 13-17 cm weighing less than males at the same lengths and those greater than that range weighing more. The summer sample shows only a slight difference between sexes. Comparisons of length-weight relacionships by year, season, and area, for each sex separately and combined are shown in Figure 4e-g. Differences in each category are more evident in the male. than in the female samples. Individuals of a given length, for both sexes, were lightest in summer, then spring and heaviest in the autumn, though larger females were heavier in the spring than they were later in the year. The most robust males were from the Middle Atlantic and Southern New England areas, while females from Georges Bank and Southern New England were heavier at any given length than those from the other areas. The regressions for the Gulf of Maine are not given since the weight of only five Loligo were obtained.

Differences between the length-weight relationships of male and female <u>Illex</u> were not as consistant as those of <u>Loligo</u>. The overall <u>Illex</u> regressions (pooled over year, season, and area, Figure 5a) were visually inseparable. Though great differences were exhibited in the spring (Figure 5b) and Nova Scotian samples (Figure 5C); the relationships from the other areas and seasons were similar for each sex. Comparisons by year, season, and area, overall and for each sex separately are illustrated in Figures 5e-g. The greatest difference is exhibited by both males and females, among areas, where the Nova Scotian samples had a nearly linear length-weight relationship (b = 0.827 and 1.170 for males and females, respectively, and 1.242 overall).

Analyses of Covariance:

Analysis of covariance was used to test if observed differences in the regression equations of each species were statistically significant (Tables 4, 5). Differences between sexes were examined with tests of slopes and adjusted means, by pooling data over all years, areas, and seasons for each sex. Consistencies in these differences were checked by testing differences between sex within each season (data pooled over years and areas), within each area (data pooled over seasons and years), and within each year (data pooled over seasons and areas). Seasonal differences were tested, with pairwise tests of slopes and adjusted means for data combined over all areas, sexes, and years, for each season. Area and annual differences in slopes and adjusted means were tested with data pooled over years, sexes, and seasons, and over areas, sexes, and seasons, respectively.

- 6 -

Significant differences (P<0.01) were exhibited in slopes and adjusted means between male and female Loligo (Table 4a), indicating that overall, females were heavier than males of the same length. This difference was also evident during each season, though it was only significant (P<0.01) in the spring. Slopes were significantly different between sexes in most areas (P<0.01), but while adjusted mean weights for females were greater in all areas this difference was significant only in Southern New England and Nova Scotia (P<0.01). Significance was consistantly demonstrated in tests of slopes for each year (P<0.01). Tests of adjust means were also significant in 1975 and 1977 (females again heavier), but not in 1976.

Tests between seasons (Table 4b) showed significant differences (P<0.01) in adjusted means for each pair with heaviest individuals in autumn and lightest in summer. Significant differences were also evident in slopes between summer and autumn (P<0.05).

Differences in Loligo length-weight regressions were also found between areas (Table 4c). Adjusted means were significantly different (P<0.01) between the Middle Atlantic and all areas and between Southern New England and Nova Scotia, generally decreasing from south to north (excluding the Gulf of Maine). Significance in both slopes and adjusted means were evident only between: the Middle Atlantic and Southern New England and between Southern New England and Nova Scotia. Though the adjusted mean from Middle Atlantic samples was significantly greater than that of Southern England Loligo, the slope from the latter was greater. Larger individuals (over 19 cm) from Southern New England, generally, weighed more than those of the same length from the Middle Atlantic, while the reverse was true for individuals less than about 19 cm.

- 7 -

Pairwise comparisons between years produced significant results in tests of adjusted means, decreasing from 1975 to 1977. However, there was no significant difference in the slopes in any year.

Differences in length-weight regressions for <u>Illex</u> were not as consistent as for <u>Loligo</u>. Tests of adjusted means and slopes between sexes (Table 5a) revealed significant differences (P<0.01) in the overall adjusted means (males heavier per unit length) but no significance in their slopes. When regressions by sex were compared within seasons, only summer samples were significantly different in both adjusted means and slopes (males heavier). Comparisons between sex, within the five areas showed significance in both slopes and adjusted means on Georges Bank (males heavier) and in the Nova Scotian area (females heavier), while adjusted means were significantly different in Southern New England (P<0.05), Georges Bank (P<0.05), the Gulf of Maine (P<0.01), and Nova Scotia (P<0.01). Differences between males and females within each year were also inconsistent. The adjusted mean of the males was greater than that of the females in each year, but this difference was only significant (P<0.01) in 1976. Significant differences in slope were found only in 1977 data, with females over about 20 cm heavier per unit length, than males.

Differences in length-weight regressions due to seasons (Table 5b) were not significant for <u>Illex</u>. However, tests of adjusted means and slopes between most pairs of areas were (at the P <0.05 level). Adjusted means were greatest in the Gulf of Maine, and less for Nova Scotia, Georges Bank, the Middle Atlantic, and Southern New England, respectively. Significance in adjusted means at the P <0.01 level were exhibited between: the Middle Atlantic and Nova Scotia; Southern New England and Georges Bank, the Gulf of Maine, and Nova Scotia; and Georges Bank and the Gulf of Maine. Tests of slopes were significant (P <0.01) for all comparisons except between: Middle Atlantic and Southern New England; Middle Atlantic and the Gulf of Maine; and Southern New England; Middle Atlantic and the Gulf of Maine; and Southern New England and the Gulf of Maine. Therefore, the length-weight regression for <u>Illex</u> from the Nova Scotian area was significantly different (both adjusted means and slopes) from all other areas, exhibiting an almost

linear relationship. Georges Bank <u>Illex</u> were also significantly different than those from other areas, with individuals greater than 25 cm weighing less than those of comparable lengths taken in other areas (except Nova Scotia).

- 8 -

There was a significant difference between the adjusted means in 1975 and 1976, with the mean in 1975 significantly greater than in 1976. Tests of slopes revealed significant differences (P < 0.01) between 1975 and 1977, and between 1976 and 1977 samples (Table 5d), however, there was no significance in tests of adjusted means between those years.

Comparisons of total calculated versus total empirical weights were made for each species, for all data and for various combinations of data (Table 6). Weights were calculated on an individual basis from sampled lengths, summed within length (cm) interval and then summed over all lengths. Percent differences were calculated between these values and those obtained by summing the individual empirical weights for the data set. Predicted weights which are based on geometric means were consistently less than empirical weights, but these differences were very small, ranging from 0.08 to 6.60 percent for <u>Loligo</u> and from 0.17 to 5.62 percent for <u>Illex</u>. This indicates that the dorsal mantle length-total weight relationship produces relatively precise approximations of total empirical weight, and that the functions used for each species are fairly accurate representations of this relationship.

Discussion

Results of these analyses indicate that the weight of <u>Loligo</u> of a given size, differs significantly, depending on the sex of the individual. The consistency of this difference in tests within areas, seasons, and years is evidence that it is not merely a product of the statistical procedures employed. Major factors influencing differences between sexes, are the relative weight of gonads, with mature ovaries heavier than fully developed testes; differences in rates of maturation, and differential feeding during different stages of maturation and at different sizes. This study also suggests significant seasonal differences in the length-weight relationship of <u>Loligo</u>. A possible explanation of this is that in spring larger individuals are more mature and, therefore, heavier than later in the year; while in summer the many individuals which are not yet mature begin to feed; so by autumn individuals throughout the size range are heavier as a result of summer feeding. Area and annual differences, also shown significant for <u>Loligo</u>, may possibly be explained by various physical and biological factors such as temperature, nutrients, and

availability of food.

Differences in length-weight relationships for various groupings of <u>lilex</u> were less consistent than for <u>Loligo</u>. Overall, tests between sexes were not significant, except in summer samples, possibly due to maturation of males, or differential feeding. Seasonal and annual differences were not significant for <u>lilex</u>, but area differences proved to be important. As with <u>Loligo</u> these are most likely due to physical and biological factors such as temperatures, nutrients, and food availability.

Conclusions

This study points out that although differences in the length-weight relationships of Loligo (by sex, year, season, and area) and <u>lilex</u> (by area), do exist, comparisions within categories of sums of total empirical weight versus sums of total weight predicted by equations obtained for all data within a given set, indicate that the net results of using a single equation for each species is approximately as precise as using separate equations for each aera, season, year, or sex. This implies that for purposes of predicting total numbers taken in a fishery from length frequency and total catch in weight data, a single equation, obtained from all samples is probably as accurate as applying different equations to catches from each aera or season. These equations are: $W = 0.25662L^{2.15182}$ and $W = 0.4810L^{2.71990}$, for <u>Loligo</u> and . I<u>llex</u>, respectively. However, significant changes in this relationship, for these short lived species, could occur as a result of changes in environmental factors. To monitor any such future changes sampling done during surveys should for four finue with data reported by sex and area, and additional samples should be taken during the inshore fishery.

Literature Cited

Dixon, W. J. (ed.), and H. B. Brown. 1977. <u>BMDP-77, Biomedical Computer</u> <u>Programs, P-series</u>. University of Calif. Press. Berkeley, Calif. 880 p. Grosslein, M. D. 1969. Groundfish survey program of BCF Woods Hole. <u>Comm.</u> <u>Fish. Rev.</u> 31:22-35.

Mercer, M. C. MS1973. Length-weight relationship of the ommastrephid squid, <u>Illex illecebrosus</u> (Le Sueur). <u>Annu. Meet. Int. Comm. Northw. Atlant.</u> <u>Fish.</u> 1973, Res. Doc. No. 72, Serial No. 3024 (mimmeo).

- Mesnil, B. 1977. Growth and life cycle of squid, <u>Loligo pealei</u> and <u>Illex</u> <u>illecebrosus</u>, from the Northwest Atlantic. <u>Int. Comm. Northw. Atlant.</u> <u>Fish.</u>, Sel. Pap. No. 2:55-69.
- Nie, N. H., C. Hull, J. Jenkins, K. Steinbrenner, and D. Bent. 1975. <u>SPSS</u>, <u>Statistical Package for the Social Sciences</u>, 2nd ed. McGraw-Hill Book Co. New York. 675 pp.
- Squires, H. J. 1957. Squid, <u>illex illecebrosus</u> (LeSueur), in the Newfoundland fishing area. <u>J. Fish. Res. Bd. Canada</u>, 14(5):693-728.
 - Squires, H. J. 1967. Growth and hypothetical age of the Newfoundland bait squid, Illex illecebrosus. <u>Ibid.</u>,24(6):1209-1217.
 - Summers, W. C. 1969. Winter populations of <u>Loligo pealei</u> in the Mid-Atlantic Bight. Biol. Bull., 137:202-216.
 - Summers, W. C. 1971. Age and growth of <u>Loligo pealei</u>, a population study of the common Atlantic coast squid. <u>Ibid</u>., 141:189-201.

Winer, B. J. 1971. <u>Statistical Principles in Experimental Design</u>, 2nd ed. McGraw-Hill Book Co., New York. 907 pp.

Table 1. Survey cruises used in <u>Illex</u> and <u>Loligo</u> length-weight relationship analysis.

Year	Cruise Code	Country	Season	Area
1975	753	USA	Spring	Mid-Atlantic - Nova Scotia
· ·	758	USA	Autum	Mid-Atlantic - Nova Scotia
1976	762	USA	Spring	Mid-Atlantic - Nova Scotia
	766	USSR	Autum	Mid-Atlantic - Nova Scotia
	767	USA	Autumn	Mid-Atlantic - Nova Scotia
1977	771	USA	Spring	Mid-Atlantic - Nova Scotia
	774	USA	Summer	Mid-Atlantic - Nova Scotia
	775	Japan	Summer	Mid-Atlantic - Georges Ban
-	778	USA	Autumn	Mid-Atlantic - Nova Scotia

<u>Year</u> -	Season	Area		_										
-			<u>n</u>	<u>×</u>	<u>\$.</u> 0.	\$.E.	<u>Min.</u>	Max.	x	\$, D .	<u>S.E</u>		. <u>Nin</u>	Max
	All Data	-	1709	170.2066	58.43553	1.413533	21.0	425.0	133.4383	91.42767	2.2	1160	4.0	752
A11	A11	A11				•	 	Hales						
		Hid-Atlantic	409	190.8924	59.80818	2.957325	41.0	425.0	166.6308	104.2479		5473	4.0	734
		So. New England	304	196.7039	53.81042	3.08624	65.0	402.0	170.4572	99.85371	. 5.7	27004	10.9	752
		Georges Sank	164	173.0061	63.74359	4.977538	21.0	355.0	127.2927	90.42714	- 7.9	61172	7.9	526
		Gulf of Maine	3	170.6667	10.01665	5.78312	161.0	181.0	120.0	23.00	13.2	7906	97.0	143
		Nova Scotia	35	193.9714	61.40066	10.37859	98.0	310.0	133.2867	84.12161	14.2	1916	34.0	305
A11	Spring	A11 ·	388	201.6959	69.22797	3.514519		425.0	173.9227	122.0835	6.1	97851	7.0	752
	Summer		41	169.0244	46.19875	7.215032	90.0	298.0	95.82927	49.22444		87566	26.0	- 25(
	Autumn		486	181.8086	48.62424	2.20564	41.0	340.0	153.2119	80.65131		68417	4.0	57(
75	A11	All	580	188.5931	60.11943	2.496323		425.0	163.9241	103.7126		06433	4.0	75
76 77	A11	AU	212	200.783	57.14859	3,924981	41.0	374.0	172.2736	95.95537		90241	10.0	599
77	A11	A11	123	175.5854	54.11841	4.879692	61.0	334.0	116.0488	82.82709	7.4	68266	9.0	46(
		٤						Fenales						
A11	A11	A11	697	159.9928	37.227626	1.410083	54.0	286.0	115.8293	62.83559	2.3	80067	7.0	435
		Nid-Atlantic	293	169.2423	37.53026	2.192542	54.0	286.0	130.6485	64.5405	3.7	70497	7.0	435
		So. New England	243	162.251	34.21141	2.194662	59.0	275.0	117.2346	59.97084	3.8	47131	10.0	394
		Georges Bank	124	136.7097	29.86794	2.68222	55.0	200.0	83.0	44.80145		23289	10.0	222
		Gulf of Haine	2	168.0	18.38478	13.00001	155.0	181.0	134.0	35.35535	25.0		109.0	159
		Nova Scotla	35	148.9143	42.70926	7.219162	70.0	227.0	97.28572	77.08994		3058	14.0	350
A11	Spring	A11	299	157.6522	38.48149	2.225442		275.0	111.4114	66.74384		59897	10.0	435
	Summer		35	131.0857	14.64556	2.476552		158.0	58.39999	15.99117		03001	30.0	95
	Autumn		363	164.7080	36.30104	1.905311	54.0	286.0	125.0055	58.99672		96525	7.0	403
75	<u>A11</u>	A11	424	159.8982	39.81136	1.933411	54.0	286.0	121.9693	66.75272	3.2		7.0	435
76 77			178	166.6292	32.43434	2.431056	59.0	270.0	118.2416	55.62306	4.1	69125	10.0	374

;

		, 1		
Table 2a.	Length-weight summary statistics for <u>Loligo</u> ; by sex, and for each area, season and year.			

•

		· · · · · · · · · · · · · · · · · · ·		Dorsa] mentle]	ength				To	tal weight		
ear	Season	Area	0	x	\$. <u>D</u> .	<u>S.E.</u>	Min.	Nax.	<u>x</u>	<u>Ş.Q,</u>	<u>\$.Ę,</u>	<u>Min.</u>	Max.
	Ail Gata		2605	222.5766	40.73985	0.7982071	0.00	450.0	243.19	108.8574	2.132819	3.0	861.0
							•	Ha	les				
		Hid-Atlantic	333	192.6877	31.55191	1.729034	75.0	254.0	164.1892	71.72276	3.930386	8.0	391.0
		So. New England	217	192.5069	43.09842	2.925711	49.0	285.0	168.9309	86.65753	5.882696	4.0	430.0
		Georges Bank	379	215.0607	25.76859	1.323644	120.0	450.0	220.4617	58.56674	3.008372	26.0	- 3 9 7.0
		Gulf of Maine	- 77	223.5584	14.55865	1.662531	161.0	250.0	258.052	60.58702	6.904531	87.0	373.0
		Nova Scotia	68	213.8236	28.77963	3.490043	55.0	277.0	215.2647	47.823875	5.799496	50.0	402.0
11	Spring	A11	- 34	172.8235	26.97751	4.626604	128.0	241.0	118.6471	51.7903	8.881963	47.0	253.0
	Summer		417	209.6906	19.74397	.9668665	120.0	269.0	200.4149	59.33192	2.905497	70.0	430.0
	Autumn		623	202.0610	39.55093	1.684575	49.0	450.0	195.488	83.51697	3.346037	4.0	428.0
5	A11	AH	237	196.1266	38.63312	2.50949	92.0	285.0	186.7722	93. 99 959	6.105929	15.0	397.0
5 5 7			185	190.3297	44.57156	3.276966	49.0	265.0	171.8811	87.65227	6.444323	4.0	428.0
7			652	210.9018	25.09465	.9827825	120.0	450.0	204.4985	61.08788	2.392385	26.0	430.0
								Fema 1	es				
11	A11	A11	1511	237.0735	37.97983	.9770589	52.0	343.0	280.002	113.331	2.915523	4.0	861.0
		Mid-Atlantic	362	222.8149	44.52104	2.339974	.80.0	343.0	245.8232	125.4576	6.593907	10.0	794.0
		So. New England	268	225.8552	47.19168	2.882691	52.0	311.0	252.5933	133.1323	8.132354	4.0	861.0
		Georges Bank	558	242.7867	29.46974	1.247553	62.0	301.0	290.2581	99.05467	4.193318	11.0	738.0
		Gulf of Maine	165	252.5162	18.81023	1.464374	185.0	316.0	330.3696	90.3768	7.035824	78.0	713.0
		Nova Scotia	158	252.2975	28.24924	2.247388	110.0	303.0	315.9810	74.4052	5.919359	139.0	523.0
11	Spring	A11 -	17	181.0588	48.78841	11.83293	80.0	266.0	146.1176	117.7810	28.56609	10.0	408.0
	Summer		556	231.1799	28.78857	1.220907	139.0	290.0	247.3452	92.63647	3.928661	51.0	547.0
	Autumn		938	241.5821	41.17207	1.344316	52.0	343.0	295.8582	120.4033	3.931305	4.0	861.0
5	A11	A]]	219	219.5434	47.2823	3.195042	82.0	316.0	244.9178	132.1029	8.926682	11.0	713.0
6	A11	A11 -	304	242.523	44.75668	2.566972	52.0	343.0	305.6777	131.5025	7.542185	4.0	861.0
7	A11	A11	988	239.2834	31.87256	1.014001	80.0	303.0	279.8787	100.0517	3.183069	10.0	738.0

Table 2b. Length-weight summary statistics for <u>Illex</u>; by sex, and for each area, season, and year.

.

12

1

Т

Area	Season	Year	Sex	Intercept (a)	51ope (b)	Std. error '	Antilog _e of a	Correlation coefficient (r)
A1)	A11	A11	A11	-1.35015	2.15182	0.2861	0.25662	0.9526
NI I	A11	A11	Hales	-0.86949	1.97528	0.3196	0.41917	0.9108
			Femalos	-1.78605	2.32364	0.2038	0.16762	0.9447
		1975	All	-1.41009	2.18743	0.2863	0.24169	0.9594
		13/0	Males	-0.85092	1.98020	0.3303	0.42702	0.9118
			Females	-1.68916	2.27017	0.2221	0.20410	0.9416
		1976	All	-1.23862	2.10357	0.2691	0.28978	0.9461
		1910	Hales	-0.23259	1,76347	0.3192	0.79248	0.8728
			Females	-2.20362	2.45497	0.1196	0111040	0.9744
		1977	A11	-1.61568	2.19236	0.1612	0.19876	0.9712
		7311	Hales	-1.60828	2.17591	0.1547	0.20023	0.9779
			Femalas	-2.16486	2.41658	0.1507	0.11477	0.9574
	Spring	A11	A)]	-1.38547	2.14418	0.2736	0.25021	0.9689
	aht.mA		Males	-0.88956	1.96453	0.3023	0.41084	0.9332
			Females	-2.02655	2.40412	0.18585	0.13179	0.9670
	Summer		All	-0.78138	1.87046	0.16041	0.45777	0.9522
	9 Generation		Males	~0.68210		0.1639	0.55872	0.9568
			Fewales	-0.89154	1.79805 1.91773	0.1658	0.41002	0.8009
	Autum		All	-1.38983	2.18390	0.2711	0.24912	0.9358
	AND COMPLE		Males	-0.93193	2.01763	0.3290	0.39379	0.8917
			Females	-1.39656	2.19453	0.2230	0.24745	0.9247
Mid-Atlantic			A11	-1.04605	2.05558	0.2803	0.35132	0.9193
nin-veraneice			Males	-0.97119	2.02414	0.3154	0.37863	0.9164
			Females	-1.37391	2.18067	0.2196	0.25312	0.9262
So. New England			All	-1.77585	2.29771	0.1844	0.16934	0.9737
or yes charging			Hales	-1.24814	2.10368	0.2528	0.28704	0.9305
			Females	-2.48431	2.48431	0.1762	0.08338	0.9542
Georges Bank			All	-1.31404	2.11827	0.3566	0.26873	0.9556
acolâcs haur			Nales	-0.26577	1.73782	0.4096	0.76585	0.8755
			Females	-1.99225	2.41504	0.1798	0.13639	0.9539
Gulf of Maine			All Males Females					
Nova Scotia			A11	-1.26702	2.06714	0.2491	0.28167	0.9478
			Males	-1.01588	1:95655	0.2098	0.36208	0.9506
			Females	-1.98178	2.36422	0.2537	0.13782	0.9433

Table 3a. Regression parameters and statistics for dorsal mantle length (cm) and total weight (g) relationships of <u>Loligo</u>, by sex, area, season, and year.

(1) Sample size too small to fit regression.

.

5

Table 3b. Regression parameters and statistics for dorsal mantle length (cm) and total weight (g) relationships of <u>Illex</u> by sex! area, seeson, and year.

			111.1			O 14144	0 2000	10.2
Area	Season	Year	^ I I Sex	Intercept (4)	Slope (b)	Std. error	Antilog of a	Correlation coefficient (r)
A11	A11	A11	A11'	1 09444	0 71000	10.0400		0.0050
n11	ALL	NII	Hales	-3.03444	2.71990	0.2419	0:04810	0.9259
				-2.90355	2.68514	0.2753	0.05483	0.8901
		1075	Females	-3.12432	2.74348	0.2114	0.04397	0.9272
		1975	A11	-3.60800	2.91776	0.2262	0.02711	0.9547
			Hales	-3.86325	3.01297	0.2407	0.02100	0.9423
			Females	-3,40628	2.84306	0.2054	0.03316	0.9607
		1976	<u>A11</u>	-3.48898	2.86430	0.2482	0.03053	0.9654
			Males	-3.24850	2.79844	0.3193	0.03744	0.9382
			Females .	-3.78275	2.95017	0.1834	0.02276	0.9678
		1977	ATT	-2.04101	2.40036	0.2281	0.12990	0.8489
			Males	-1.09567	2.09151	0.2596	0.33432	0.7115
		_	Females	-2.49809	2.54442	0.2166	0.08224	0.8693
	Spring	A11	A11	-3.43632	2.84766	0.2506	0.03218	0.9299
			Males	-1.93149	2.32096	0,2554	0.14493	0.8101
			Females	-3.87840	2.98569	0.1965	0.02068	0.9782
	Summer		A11	-3.85026	2.98298	0.1601	0.02127	0.9154
			Males	-5.54897	3.55229	0.1796	0.00389	0.8523
			Females	-3.65525	2.91409	0.1719	0.02586	0.9134
	Autumn		A11	-2.90048	2.67682	0.2719	0.05500	0.9295
			Males	-2.71526	2.62456	0.3189	0.06619	0.8961
-			Females	-2.95402	2.68939	0.2310	0.05213	0.9266
lid-Atlantic	A11		A11	-3.25968	2.79140	0.24742	0.03840	0.9309
			Males	-3.06027	2.73143	0.3067	0.04688	0.8579
			Females	-3.36896	2.82290	0.2186	0.03443	0.9465
o. New England			A11 .	-3.64833	2.91003	0.2045	0.02603	0.9743
	•		Males	-3.59821	2.90213	0.2285	0.02737	0.9658
			Females	-3.72612	2.92964	0.1792	0.02409	0.9716
eorges Bank			ATT	-2.19814	2.45559	0.2213	0.11101	0.8463
			Males	-1.24068	2.15026	0.2345	0.28919	0.7160
			Females	-2.71228	2.61320	0.1067	0.06639	
ulf of Maine	•		All	-3.39896	2.84990	0.1466	0.03341	0.8678
			Males	-4.77169	3,31502	0.1426		0.8756
			Females	-5.11873	3. 37266	0.1291	0.00847	0.8520
ova Scotia			All	1.67461	1.24241		0.00598	0.8937
			Males	2.82347	0.82687	0.2160	5.33671	0.7191
			Females	1.95943	1.16965	0.2002	16.83517	0.6464
			1.090102	1,20243	1.10303	0.1956	7.09528	0.6426

•		Test of	'adjuste	idjusted means Test of slop			
Fector	Fector		df	Level of signifi- cance	F-Ratio	df	Level of signifi- cance
Overail	El - El - Le tall	13.457	1609	P<0.01	51.300	1608	P<0.01
Season 🚊	≈ Spiříng= ÷	16.122	684	P<0.01	46.523	683	P<0.01
	= Summer:	.001	73	n.s.	0.218	72	n.s.
	Autum	2.339	846	n.s.	5.737	845	P<0.05
Area ·	Mid-Atlantic	3.302	699	n.s.	4.152	698	P<0.05
	So. New England	12.502	544	P⊲0.01	25.187	543	P<0.01
	Goorges Bank - Buff of Maine(1)	1.477	285	n.s.	23.235	284	P<0.01
	= Nova=Scotia	7.183	67	P<0.01	5.054	66	P<0.05
	_ 1975_	12.415	1001	P<0.01	22.650	1000	P<0.01
	1976	0.018	401	п.s.	47.078	400	P<0.01
-	- 1977	18.762	215	P<0.01	7.590	214	P<0.01
	<u>(</u>		apart son	of adjusted	means		
		Mates		Females			
·	Adjusted mean	4.7055		4.7584			
고고 소신	<u>Std.</u> error	.0094		.0108			•
	: t-test females	3.6671	P<0.01	L			

Table 4a. Results of analyses of covariance of adjusted means and slopes of <u>Loligo</u> length-weight regression equations between sexes: all seasons, areas, and years combined; by season (areas and years pooled); by area (seasons and years pooled); and by year (seasons and areas pooled).

Table 4b. Results of covariance analyses, tests of adjusted means and slopes of Loligo length-weight regression equations between seasons (areas, years, and sexes pooled), and simultaneous comperisons of adjusted means. . .

•	Test: c	if ad fus	ted means	Te	st of s	0065
Seasons :	F-Ratio	df.	Level of signifi- cance	F-Ratio	df	Level of signifi- cance
Spring vs. summer	16.335	844	P<0.01	5.533	843	P=0.05
Spring vs. autum	60.993	1629	P<0.01	1.360	1628	n.s.
Summer vs. autumn	53.887	936	P<0.01	7.163	935	P<0.01

	<u>Comparison</u>	is of Adjuste	<u>d Meáns</u>
	Spring	Summer	Autum
Adjusted Nean	4.5358	4.4078	4.6422
Std. error	0.0097	0.0307	0.0092
	<u>t-matrix a</u>	<u>nd significa</u>	ica levels
Spring		•••	
Summer	-3.983 P<0.01	47	
Autum	7.945 P⊲0.01 -	7.316 P<0.01	

Table 4c. Results of analysis of covariance, tests of adjusted means and slopes of <u>Loligo</u> length-weight regression equations between pairs of areas (sexes, seasons, and years pooled), and simultaneous comparisons of adjusted means.

** 7	Test of	adjusted		Test	of slop	85
Area comparison	F-Ratio	df	Level of signifi- cance	F-Ratio	df	Level o signifi cance
Mid-Atlantic vs. So.						
New England	9.037	1263	P<0.01	34.176	1262	P<0.01
Nid-Atlantic VSI Georges Banks	20.605	1067	P<0.01	1.785	1066	n .s .
Mid-Atlantic vs.						
Gulf of Maine Mid-Atlantic vs.	0.1437	705	n.s.	0.066	704	n.s.
Nova: Scotia.	29.764	771	P<0.01	0.010	770	ก.ร.
So. New England vs.		-				
Georges Bank So. New England vs.	1.301	927	n.s.	18.713	926	P<0.01
Gulf of Maine	1.258	565	n.s.	0.044	564	n.s.
So. New England vs.						
Nova Scotla Georges Bank vs. Gulf	29.149	631	P<0.01	11.215	630	P<0.01
of Maine	0.747	369	n.s.	0.031	368	n.s.
Georges Bank vs. Nova						
Scotia Gulf of Maine vs.	4.287	435	P<0.05	. 0.182	434	n.s.
Nova Scotia	4.396	73	P<0.05	0.085	72	n.s.
	Compan		adjusted me			•
-	Middle	So. New		Gulf of	Nova	
Adjusted mean	<u>Atlantic</u> 4.6220	England 4.5796		Maine 4.6721	Scoti 4.440	
Std. error	0.0104	0.0116		0.1222	0.03	
	t-metr	<u>1x (with</u>	significance	a level)		
Mid-Atlantic	- .					
So. New England	-2.7425 P<0.01	-				
Georges Bank	-4.2064	-1.8890	-			
-	P<0.01	n.s.				
Gulf of Haine	0.4083		1.0469	-		
Nova Scotla	n.s. -5.3388	n.s. -4.0497	n.s. -2.8760	-1.8340	-	
	P<0.01		P<0.01	n.s.	-	

		Test of a	djusted m	eans	Test	of slo	285
 	Compart son	F-Ratio	df	Level of signifi- cance	F-Ratio	df	Level of signifi- cance
11	1975vs1976	9.275	1501	P<0.01	2.401	1500	n.s.
	1975vs1977	72.857	1304	P<0.01	0.175	1303	n.s.
	1975vs1977	42.700	632	P<0.01	2.358	631	n.s.
- Adjusted	MELIS	<u>1975</u> 4.6200	<u>1976</u> 0 4.564	49 4 .	<u>177</u> 4379		
Std. error		0.008		35 O. gnificance	.0182 <u>1</u>		
	1975	·		•			
· <u>·</u>	1976	-3.480 P<0.0					
	1977	-9.110 P<0.0					

Results of analyses of covariance tests of adjusted means and slopes of Loligo length-weight regression equations between pairs
of years (sex, seasons, and areas combined), and simultaneous comparisons of adjusted means.

-

Table 5a. Results of analyses of covariance of adjusted means and slopes of <u>lllex</u> length-weight regression equations by sex: all seasons, areas and years combined; by season (area and year pooled); by area (season and year pooled); and by year (season and area pooled).

· .

-

•

.

		Test of	Test of adjusted means			Test of slopes		
Factor		F-Ratio_	df	Level of signifi- cance	F-Ratio_	df	Level of signifi- cance	
Overall -		17.186	25 11	P<0.01	1.353	2610	n.s.	
Season ₍	Spring Summer	0.718 25.577	45 999	n.s. P<0.01	3.599 30.168	44 998	π.s. P<0.01	
E f	Autum	7.020	1561	P<0.01	1.140	1560	A.S.	
Area	Mid-Atlantic So. New England Georges Bank	5.071	692 482 933	n.s. P<0.05 P<0.05	0.855 0.160 14.632	691 481 932	n.s. n.s. P<0.01	
	Gulf of Maine Nova Scotia	51.376 42.314	239 223	P<0.01 P<0.01	0.049 4.409	238 222	n.s. P<0.05	
Year	1975	6.080	453	P<0.05	3.625	452	n.s.	
	1976 1977	8.495 0.321	486 1666	Р<0.01 п.s.	3.361 25.583	485 1665	n.s. P<0.01	

P<0.01 = Significant at 1% level P<0.05 = Significant at 5% level n.s. = non-significant

. .

• •

Table 5b. Results of analyses of covariance tests of adjusted means and slopes of <u>lilax</u> length-weight regression equations between seasons (years, areas and sexes pooled), including simultaneous comparisons of adjusted means.

	Test of	Test of adjusted means			lest of slopes			
Seasons	F-Ratio	df	Signifi- cance level	F-Ratio	df	Signiff cance level		
Spring-Vs. summer	0.909	1024	n.s.	1.410	1023	n.s.		
Spring vs. autums	1.822	1627	п.s.	0.993	1626	л.s.		
Summer VS. autumn	0.122	2548	ก.ร.	21.396	2547	P<0.01		
						-		
	_							

Comparisons of adjusted means

	Spring	Summer	Autum
Adjusted mean	5.3076	5.3470	5.3503
Std. error	0.0330	0.0076	0.0060
	t-mat	rix and sign	ificance levels
Spring	÷		-
Summer	1.1640 n.s.	-	
Autum	1.2759 N.S.	0.3449 n.s.	•-

ŝ,

Table 5c. Results of analyses of covariance, tests of adjusted means and slopes of <u>lilex</u> length-weight regression equations by area, (sex, seasons and years pooled) and simultaneous comparisons of adjusted means among areas.

•	Test of	ad justed		Test of slopes		
Comparison	F-Ratio	df	Level of signifi- cance	- F-Ratio	df	Level of signifi- cance
Mid-Atlantic vs. So.						
-New England	5.652	1194	P<0.05	e		
Mid-Atlantic vs.	3.036	1134	r<0.03	5.310	1193	P<0.05
Georges Bank	3.816	1638	n.s.	26.050	1637	0.0.01
Hd-Atlantic vs.				20.000	1031	P<0.01
Guif of Maine	6.603	941	P<0.05	0.131	940	л. s.
lid-Atlantic ys.					~~~	11.3.
Nova Scotia	9.957	925	P<0.01	250.813	924	P<0.01
So. New England vs. Georges Bank						
So, New England vs.	12.271	1431	P<0.01	50.111	1430	P<0.01
Gulf of Maine	13.956	734			_	
50. New England vs.	19,200	/ 34	P<0.01	0.204	733	n.s.
Nova Scotia	13.083	718	P<0.01	401.683		
eorges Bank vs.		, 10	F-0.01	401.003	717	P<0.01
Guif of Maine	12.393	1178	P<0.01	6.754	1177	B-0.01
eorges Bank vs.				0.734	11//	P<0.01
Nova Scotia	5.528	1162	P<0.05	159.471	1161	P<0.01
ulf of Maine vs.	_				1101	F-0.01
Nova Scotla	5.102	465	P<0.05	124.460	464	P<0.01
	<u>Compar</u>	isons of a	udjusted me	ans		
	Middle	So. New		Gulf of	Nova	
	Atlantic	England	Bank	Maine	Scotia	
djusted mean	5.3363	5.3024	5.3596	5.4031	5.381	
td. error	0.0090	0.0107	0.0078	0.0153	0.015	
id Atlantic	<u>t-estri</u>	<u>Ix and stg</u>	nificance			
o. New England	-					
A WEN CHAIRING	-2.4567	-				-
eorges Bank	P<0.05					
Jee Walth	1.9297 n.s.	4.2678	-			
ulf of Maine	3.7088	P<0.01 5.3169	7 6544			
	P<0.01	P<0.01	2.5544 P<0.05	-		
ova Scotia	2.4331	4.0785	1.2238	-1 0146		
	P<0.05	P<0.01	n.s.	-1.0146 n.s.	-	
			11 - 2 -	16.3.		

Table 5d. Results of covariance analyses, tests of adjusted means and slopes of <u>lilex</u> length-weight regression equations between pairs of years (sexes, seasons and areas combines), and simultaneous comparisons of adjusted means.

		Test of	adjusted	means	Test	of slop	
Factor	Compart son	F-Ratio	df	Level of signifi- cance	F-Ratio	<u>d</u> f	Level of signifi cance
Overall	1975vs1976	7.208	960	P<0.01	0.917	959	n.s.
· ~-	1975vs1977	0.317	2132	n.s.	83.393	2131	P<0.01
	1976vs1977	1.920	2167	n.s.	86.398	2166	P<0.01
	-	Compar	isons of	adjusted me	<u>ans for yea</u>	<u>ers</u>	
		<u>1975</u>	<u>1976</u>	<u>1977</u>			
Adjusted a Std. errow		5.3681 0.0113	5.33481 0.01061		-		
		t-mat	rix and s	ignificance			
-	1975				•		
	1976	-2.1761 P<0.05					
	- 1977	-1.6849 n.s.	0.9759 n.s.	ea .			
P<0.05 = 3	Significant at Significant at n-significant						

· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			Lolio	2	Illex	
	_		_	Number	5	Number	
Area	Season	Year	Sex	sampled	error	sampled	error
611	ATT	A11	A11	1709	1.78	2604	1.68
			Males	915	3.73	1073	2.08
			Females	697	1.60	1511	1.73
		1975	A11	1088	0.74	464	1.47
		•	Nates	580	3.77	237	2.07
			femiles	424	1.48	219	1.67
•		1976	A11	402	1.05	499	1.70
			Hales	212	2.95	185	3.18
			Females	178	0.52	304	1.40
		1977	A11	219	1.01	1641	2.30
			Nales	123	1.28	651	0.17
•			Females	95	1.34	988	2.03
	Spring	A11	ATT	770	1.23	53	2.34
			Hales	388	3.76	34	5.62
			Females	299	1.41	17	3.25
	Summer		A11	77	0.68	974	1.00
			Nates	41	0.99	916	0.26
			Females	35	1.33	566	1.24
	Autumn		ALE	862	1.45	1577	1.96
			Hales	486	4.04 *	623	2,63
			Females	363 ·	1.50		~-
Hid-Atlantic			A11	703	1.75	702	2.07
			Hales	409	2.07	333	2.14
			Females	293	1.67	362	1.78
So. New England			ATT	563	0.08	495	1.75
•••••			Males	304	3.58	217	2.63
			Females	243	1.11	268	4.83
Georges Bank			ATT	367	1.83	939	1.79
			Males	164	6.60	378	1.86
			Females	124	1.75	558	1.83
Gulf of Maine			A11		(2) (2) (2)	242	0.95
•			Nales		(2)	77	0.95
-			Females		(2)	165	0.73
Nova Scotia			A11	71	2.53	226	2.46
			Males	35	1.97	68	1.76
			Females	35	5.11	158	1.90

Table 6.	Percent overall error in calculated sample weights versus using length-weight functions for all data; and for annual	empirical sample weights 1, seasonal and area
	data by sex.	

(1) Parcent error-{Tota} empirical weight-total calculated weight)/total empirical weight.

(2) Sample size too small to fit regression,

- 20 -

Fig. 1. Survey strata (A) and areas (B) used in length-weight regression analyses for squid.

Α

8

Figure 3a. Distribution of Loligo pealei. Locations of stations where Loligo were taken, during 1977 U.S.A. bottom trawl surveys, by season.

- 23 -

Figure 3b. Distribution of <u>Illex illecebrosus</u>. Locations of stations where <u>Illex were taken</u>, during 1977 U.S.A. bottom trawl surveys, by season.

Figure 4a. Loligo length-weight relationships by sex: all areas, years and seasons.

.

Figure 4b. Loligo length-weight relationships by sex; each area: all seasons and years.

n 10

LOLIGO RETURN, ERCH SEX AND CONDINED

Figure 4d. Loligo length-weight relationships by sex, each season: all areas and years.

- 27 -

Figure 4e. Loligo length-weight relationships by season; each sex; all areas and years.

C 2

С3

Figure 5a. <u>Illex</u> length-weight relationships by sex: all areas, years and seasons.

;

.

,

.

- 32 -

C 6

Figure 5e. <u>Illex</u> length-weight relation-ships by season; each sex; all areas and years.

Figure 5f. <u>Illex</u> length-weight relationships by area, each sex; all seasons and years.

Figure 5g. <u>Illex</u> length-weight relationships by year, each sex; all areas and seasons.

C 10

.