International Commission for

the Northwest Atlantic Fisheries

Serial No. 5523

ICNAF Res. Doc. 79/VI/127

ANNUAL MEETING - JUNE 1979

Report on Groundfish Survey Carried out by the RV Ernst Haeckel in Statistical Area 0, Subarea 2 and Div. 3K during autumn 1978

Ъy

U. Berth, N. Schultz and B. Vaske Institut fur Hochseefischerei und Fischverarbeitung 251 Rostock-Marienehe, German Democratic Republic

Introduction

In the fall of 1978 the RV *Ernst Haeckel* conducted a random survey in Stat. Area 0, and Div. 2G, 2H, 2J and 3K mainly to study the roundnose grenadier and Greenland halibut stocks. The program was coordinated with the staff of the St. John's Biological Station, from which two members stayed on board the *Ernst Haeckel* for 10 days. Work began in Div. 2J on 23 September 1978. Following the completion of work there, the ship steamed northward to Stat. Area 0 and worked southward to Div. 3K (except 2J), finishing on 29 October. The original log records were loaned to the St. John's Biological Station for copying.

Methods

Stratification and Selection of Stations

The survey was planned and carried out as a stratified random survey, as this method ensures efficiency of sampling and allows the calculation of sample variance. In Stat. Area 0 and Div. 2G and 2H, a stratification scheme following that of Messtorff (1974, 1975) was used. The overall depth range was divided into two strata (301-500 m and 501-1000 m) only. In Div. 2J and 3K, the Canadian stratification scheme in the depth range of 300-1000 m (divided as 301-400 m, 401-500 m, 501-750 m, and 751-1000 m) was adopted. It was estimated that a total of 160 stations could be occupied in the time available. This initial estimate was divided among the divisions in rough proportion to the area of each and further subdivided by strata in each division, with the requirement that at least two stations per stratum be fished. Four additional stations were added to meet the minimum requirement, making a total of 164 stations in the planned coverage, as follows:

Area	Number of strata	Area of strata ¹	Number of tows	Stratum area per tow ¹		
0	13	20,078	35	574		
2G	8	4,914	22	223		
2H	5	4,381	15	292		
2J	18	6,666	42	159		
ЗК	18	16,308	50	326		
Total	62	52,347	164	319		

Square nautical miles

The actual geographical positions of the stations in Statistical Area 0 and Div. 2G and 2H were randomly selected for each stratum which was subdivided into $10' \times 10'$ unit areas and numbered. In Div. 2J and 3K, the actual subunits of the Canadian stratification scheme were used as the basis for the random selection of stations within each stratum.

Fishing operations

In general, the tows were of 30 min duration and made at a speed of 3.5-4.0 knots. In the deepest strata (751-1000 m), the warps were too short to fish in depths near 1000 m, and, depending on local con-

- 2 -

due to rough bottom, but tows lasting more than 15 min were defined as valuable if gear damage did not occur. In some cases, the towing speed had to be reduced below 3.5 knots (due to strong currents) in order to keep the net close to the bottom, and such tows were also considered as valuable. Fishing was carried out around the clock, and a tow was made if suitable bottom was found within a 5-mile radius of the pre-selection station. Positions were determined by satellite navigation and the towing speed was measured by a Doppler log.

Fishing Gear

The bottom trawl (RG 470) had the following specifications: headrope length 32.80 m, footrope length 25.00 m, vertical height 5.00 m, and distance between wings 18.00 m. The codend (mesh size 11 mm) was covered with a modified Polish-type chafer.

Biological Sampling

Greenland halibut, redfish, roundnose and roughhead grenadiers and a few cod were sampled for length, weight and stomach contents, and both otoliths and scales were taken for ageing. For some commercially less- or non-important species, only length measurements and total weight of samples were recorded. Sex was also recorded, if required, in accordance with the ICNAF sampling program. The fish were measured as total length to the centimeter below with the tail fin brought into the natural position. Large catches were subsampled to a reasonable number. Total weight of catches by species and individual weights were determined by using two coupled dynamometers (50 kg max. each, accuracy 5 kg) or steelyards of max. 20 kg and 5 kg respectively.

Hydrography

Each tow was followed by a hydrographic station at which temperature and salinity measurements (surface to bottom) were made using Namsen bottles and reversing thermometers. The ICNAF standard sections at Cumberland, Ryans Bay and Seal Island were worked at standard depths within the depth range fished.

Comment on Random Surveys

The method of random surveys is in our experience a useful way to get low biased quantitative information on groundfish stocks. Its goodness depends on:

- a) The number of evaluable stations per unit area;
- b) The constancy of (and knowledge on) catchability of the gear-vessel system with respect to different conditions (weather, currents) and fish species;
- c) The knowledge on changes in availability of different species.

There are two ways to maximize (within the cost frame) the number of valuable stations. The first is shown by an analyses of sampling effectiveness (values for this cruise are in parentheses):

Evidently 15% of the worked stations could not be fished because of lacking information on bottom conditions during the planning process. Therefore, it is important that an up-to-date catalogue of all available information on non-fishable stations be maintained, in order to avoid repetition of searching for suitable bottom on subsequent cruises.

The second way to maximize the usefulness of the survey is to pre-select randomly some replacement stations in each stratum to avoid the loss of one or more primary stations due to unsuitable bottom. In this way, the minimum number of evaluable stations would be ensured. The additional time necessary to fish the additional stations (if required) may be taken from a planned buffer period. The problem of constancy in catchability of the gear-ship system with respect to hydrometeorological conditions, as well as the different avoidance capabilities of the fish species is very hard to quantify and should not be further discussed here.

It is evident that fluctuations in availability occur for diurnal migrating species (e.g. see redfish in Fig. 13 below). Such changes may result in under-estimation of the biomass.

Results

Sampling Effort and Success

Tables 1-4 give the distribution of fishing effort as well as of the quality and quantity of biological and hydrographical material collected. The length distributions of the main species by divisions (Fig, 1-5) roughly characterize the composition of the stocks in the areas fished. Tables 5-7 show the fishing success and catch composition by area and species with respect to the main species. The quantitative and qualitative distributions within areas are shown in Fig. 6-10. More detailed information on distribution of catches of the three main species by environmental factors (depth, bottom temperature, and diurnal phase) are given in Tables 8-10, and plotted in Fig. 11-13.

Mean Trawlable Biomass

A mean trawlable biomass (MTB) of redfish and Greenland halibut for the fished strata was calculated using the areal method. "Mean" implies catches at mean catchability of gear-ship system and mean availability of fish. "Trawlable" implies minimum biomass (catchability <1, availability <1). The applied formula are

> $B = \overline{Y}_{st} \cdot \frac{A}{\overline{a}}$ where B = MTB (per division) $\overline{Y}_{st} = stratified mean catch per tow$ A = sum of stratum areas $\overline{a} = average area swept per tow$ $\overline{Y}_{st} = \frac{1}{A} \sum_{1}^{n} A_{h} \overline{Y}_{h}$ where $A_{h} = area of the h-th stratum$ $\overline{Y}_{h} = mean catch per tow in h-th stratum$ and $\overline{a} = w.\overline{v}.t$ where w = distance between wings $\overline{v} = mean towing speed$ t = towing time.

Additionally, the standard deviation of the estimated MTB and the coefficient of variation were calculated, taking \bar{a} as being constant in the statistical sense. The formula applied here is

$$s(B) = \frac{A}{a} \cdot s(\bar{Y}_{st})$$
$$= \frac{A}{a} \sqrt{\frac{1}{A^2} \sum_{l=1}^{h} \frac{A_h \cdot s_h^2}{n_h}}$$
$$= \frac{1}{a} \sqrt{\frac{h}{2} \frac{A_h \cdot s_h^2}{n_h^2}}$$

where s(B) = standard deviation of B

$$s(\overline{Y}_{st}) = standard deviation of \overline{Y}_{st}$$

 n_{b} = number of tows in the h-th stratum

 s_b^2 = variance of mean catch in h-th stratum

where
$$s_h^2 = \frac{1}{n_h - 1} \sum_{1}^{n_h} (Y_{h_i} - \overline{Y}_h)^2$$

The coefficient of variation is $C_{i} = s(B)/B$.

The calculated MTB values are given in Table 11, based on the information listed in Table 12.

Discussion

Roughly characterizing the length compositions by using the terms "young" and "old", some trends may be seen with respect to the latitude at which the fish were caught (Fig. 14 and 15). Two types of trends seem to be apparent.

The first relative to the distributions of Greenland halibut, roundnose grenadier and redfish, indicating a northern spawning. Partly settling to the bottom at the spawning locations and partly during their southerly drift, the young fish increase in abundance with increasing distance from the northern spawning areas. This may explain the scarcity of young fish in bottom trawl catches near their origin by assuming that they are still in the pelagic phase. The differences for species shown in Fig. 14 possibly indicate different levels of affinity to the bottom during early development. Greenland halibut, having the strongest affinity to the bottom settles first, followed by roundnose grenadier, which tends to be a bathypelagic and even sometimes a pelagic dwelling species. Redfish is well known as a diurnal migrating species with a relatively low affinity to the bottom. Consequently, only few young redfish were caught as shown in Fig. 14.

The less abundant species may form the second group with a weak tendency to increase (roughhead grenadier) or decrease (cod) with latitude, substituting one another geographically with respect to the spawning locations.

Looking at Fig. 11-13, the following statements can be made:

- The mutual substitution depending on depth and temperature is clearly seen (see Fig. 16).
- Temperature obviously influence fish concentrations as expected (although depth and temperature are closely correlated positively they also act independently to some extent; for example, when redfish data are grouped by depth, redfish concentrations drop with increasing temperature; similarly, when grouped by temperature the redfish concentrations increase with increasing depth).
- Fig. 13 shows a strong dependence of redfish catch on diurnal phase. The reason may be that the availability of redfish decreases during darkness because of its vertical movement.

The calculated biomasses are of the correct order of magnitude, indicating the possible usefulness of stratified random surveys. The biomass values are absolute minimum estimates for two basic reasons: first-ly the survey did not cover the total area of distribution of all of the species under consideration, and secondly the catchability and availability factors are both less than 1.

References

- J. MESSTORFF. Revised stratification scheme for groundfish surveys in Subarea 2 and Division 3K. ICNAF Res. Doc. 74/4, Serial No. 3147.
- J. MESSTORFF. Design of a Stratification Scheme for the Baffin Island Area. ICNAF Res. Doc. 75/75, Serial No. 3502.

ICNAF	Fis	hing sta	tions	Hydrography			
division	Worked	Fished	Evaluable	Stations	T-S		
0	35	33	27	38	145		
2G	22	17	15	19	86		
2H	15	12	12	12	23		
2J	42	34	32	37	109		
3К	43	37	35	34	68		
Total	157	133	121	140	431		

Table 1. Distribution of fishing and hydrographic stations by area.

Table 2. Distribution of samples by area.

.

ICNAF	No. of	Length m	easurements	Analyzed		
division	species	Samples	Specimens	Samples	Specimens	
0	39	305	8401	21	1402	
2G	30	150	5787	17	1323	
2H	30	126	4558	16	1224	
2J	45	391	12283	26	1968	
3K	42	470	14495	21	2182	
Total	61	1442	45524	111	8099	

Table 3. Distribution of samples by species.

	Length m	easurements	Analyzed		
Species	Samples	Specimens	Samples	Specimens	
Reinhardtius hippoglossoids	129	8587	47	3168	
Sebastes mentella	117	24636	34	3142	
Macrourus rupestris	23	3647	13	1100	
Macrourus berglax	113	1731	11	457	
Gadus morhua	39	738	6	232	

Table 4.	Distribution	αf	samples	hν	species
Table 4.	DIGETIDECTON	01	ageptes		opectes

- 1		length r	neas.	pres, in Area
Nr.	species	samples	pieces	0 2G 2H 2]3K
	Contraccullium tobr	21	220	
- 11	Centroscynum rubi.	4T 72	198	
- 41		27	127	
3	Raja seinicouda	2.8	37	
- 21	Raja spinicauda	16	28	
5	Kaja nyperbored	10	35	
6	Alepocephalus Dunu.		33	
Ŧ	Argentina Silva		L É	
Ö	Manotus Vinosus	1 1	- -	
3		1 1/2	263	
10	Myctophicue gen sp.	78	54	
11	Paralepis Drevis	40	24	
12	Paralepis Kryyeri		4	
15	Nemichthyes scolop		2	1 .]
- 14	Serrivomer Deani	12	66	
15	Synaphobranch spec.	14		1. 1
16	Mocdonaldia rostrata		7	1
17	Notacanthus nasus	66	30	
18	Antimora rostrata	16	+1U 137	
19	Boreogadus Saida	14	64+	1 ' ' !
20	Brosme brosme		4	· .
24	Onos cimbrius	1 - 5	5	
22	Onos ensis	35	81	1 · · · · · · · · · · · · · · · · · · ·
23	Micromesistius pout.	1	1	
24	Pollachius virens	1 1	1	
25	Urophycis chesteri	∳ 	.14	
26	Nezumia bairdi	144	331	
27	Trachyrhynchus mur.	3		
28	Cryptacanthodes mac	. 1	1 7 7	
29	Anarchichas latifr.	20	545	
30	Anarchichas lupus	40	230	
51	Anarchichas minor		10	
32	Lycodes vahli	60	343	
3	Lycodes esmarki	21	51	
3	Lycodes reticulatus	l ä	22	
3	5 Lycodes turneri	1	1 1	
36	Artedielus uncingt.	30	123	1 • • • • •
31	Collunculus microps	67	475	· · · · · ·
38	Cottunculus thomas.	8	44	· · · · · · · · · · · · · · · · · · ·
19	Triplopa pybellini	42	47	· · · · ·
	Trialops murravi	4	1	· · · ·
14	Agonus decagonus	19	136	· · · ·
1.2	Aspidophoroides mor	n. 10	19	· · · · ·
L	Cyclopierus lumpus	5	6	••••
	Ligaris koefoedi	44	60	· ·
	Liporis gelatinosus	40	20	1 • •
1	Schastes marinus	48	40	• • • •
	Givptocephalus cynoe	1 40 -	906	••
	Hippogiossoides plat	. 67	4487	
	Hippoglossus hippog	1. 12	17	
	Cerotias holboeli	4	1 4	· ·
1	1 non identified 4	1	2	•
1 5	2 # 2	2 Ż	3	1.
10		il 7	15	•
3		1 4	1 1	
5	5 .	5 4	1 4	•
		5	3	1 • •
17	- ````````			
		4642	45 539	
	IENAF U-SK Z	1444	13330	

ICNAF division	Reinhardtius hippoglossoides	Sebastes mentella	Macrourus rupestris	rourus Macrourus 28tris berglax		No. of tows	
0	1920	878	201	170	-	27	
2G	4868	1367	549	157	58	15	
2H	1796	1115	365	137	297	12	
2J	4069	16791	846	405	643	32	
3К	1141	7443	363	282	292	35	
Total	13794	275 9 4	2324	1151	1290	121	

Table 5. Distribution of total catches (kg) by area and species.

2

Table 6. Distribution of mean catches (kg) per 30 min tow by area and species.

ICNAF division	Reinhardtius hippoglossoides	Sebastes mentella	Macrourus rupestris	Macrourus berglax	Gadus morhua	No. of tows	
0	71	33	7	6	_	27	
2G	325	91	37	10	4	15	
2H	150	93	30	11	25	12	
2J	127	525	26	13	20	32	
3K	33	213	10	8	8	35	
Total	114	228	19	9	11	121	

Table 7. Percentage distribution of catches by area and species.

ICNAF division	Reinhardtius hippoglossoides	Sebastes mentella	Macrourus rupestris	Macrourus berglax	Gadus morhua	Total catch	
0	53	24	6	5	-	3623	
2:G	65	18	7	2	1	7468	
2H	43	26	9	3	7	4217	
2J	17	69	3	2	3	24509	
3K	10	62	3	2	2	11946	
Total	27	53	4	2	2	51763	

group	325	375	425	475	525	575	625	675	725	775	825
temp. °C	2.65	2.33	3.10	3.08	3.33	3.4Ŧ	3.23	4.01	_	3.38	3.23
<i>ያ</i> (ነ)	1, 23	1.17	0.79	1.02	0.96	0.74	0. 96	1.78	-	0.26	4.60
S. menł. (Kg)	23Ŧ	348	348	4 77	161	83	283	185		118	4
R. hipp. (Kg)	85	404	99	206	120	141	100	12Ŧ		44	45
М.rup. (кд)	0	0	23	2	48	.30	17	91	-	93	145
п	32	20	15	17	10	10	Ŧ	1	0	4	. 4

- 8 -

Table 8. Mean values grouped by depth.

Table 9. Mean values grouped by temperature.

group mean	-0.75	- 0.25	0.25	0.75	4.25	1.75	2.25	2.75	3.25	3.75	4.25	5.75
depth (m)	351	409	359	373	434	440	466	512	415	4 7 0	54	446
У (†)	0.27	1.24	0.68	4.60	4.2Ŧ	1.23	1.16	0.89	0.94	1.05	1.06	1.51
S.ment. (Kg)	9	o	3	8	36	3	Ŧ2	82	118	226	663	337
R.hipp. (Kg)	22	\$4	445	Ŧ 6	407	203	145	101	68	430	142	2
М.тир. (кд)	0	0	0	0	0	0	2	44	0	34	51	0
n	2	4	3	3	40	4	7	g	23	30	24	. 1

Table 10. Mean values grouped by f(t).

group	0.125	0.375	0.625	0.875	1.125	1.375	1.625	1.875
temp. °C	2.92	2.97	3.03	3.79	2.52	3.46	2.75	2.85
depth (m)	491	544	458	498	394	454	399	456
5. ment. (Kg)	124	103	474	84	161	301	389	333
R.hipp. (Kg)	93	120	413	131	64	143	89	134
M.rup. (kg)	48	40	3	74	0	8	o	30
n	21	14	47	5	7	12	45	29

Table 11. Biomass calculations.

. .

.

ICNAF division	Ÿst (kg)	Biomass (m. tons)	s(B) (tons)	C.v
Greenland 1	nalibut			
0	87.72	90,342	4,989	0.11
2G	295.43	74,963	16,953	0.23
2H	148.63	29,862	10,323	0.35
2J	137.19	43,015	5,363	0.12
3K	38.07	30,360	7,647	0.25
Redfish				
0	35.54	40,787	11,611	0.28
2G	58.17	14,760	5,195	0.35
2H	62.80	12,617	4.822	0.38
2J	489.23	153,385	51,992	0.34
3K	164.23	130,971	32,658	0.25

Table 12. Total area of strata by division and mean area fished per tow.

ICNAF division	Total area of strata A (nm ²)	Mean area per tow ā (nm ²)	
0	20,078	0.017495	
2G	4,661	0.018369	
2H	4,003	0.019924	
2J	6,125	0.019536	
ЗК	14,649	0.018369	

C 10

- 10 -

- 11 -

Fig.1 Length composition-Reinhardtius hippoglossoides (8+9)

- 12 -

Fig. 2 Length composition - Macrurus rupestris

Fig.3 Length composition - Sebastes mentella (8+9)

Fig.4 Length composition - Gadus morrhua

D 1

- 14 -

Fig.5 Length composition - Macrurus berglax (8+9)

- 16 -

Fig. 6 catch/30⁻-tow (distribution and composition) in Area 3K

Fig.7catch/30'-tow (distribution and composition) in Area 2J

Fig. 8 catch/30'-tow(distribution and composition) in Area 2H

- 19 -

Fig. 9 catch / 30'-tow (distribution and composition) in Area 2G

Fig.10 catch/30'- tow (distribution and composition)

in Area O

Fig. 11. Distribution of catch per tow by environmental factors (values grouped by depth).

Fig. 12. Distribution of catch per tow by environmental factors (values grouped by temperature).

Fig. 13 Distribution of Catch per tow by environmental factors (values grouped by a function of local time)

Fig. 14. Geographical distribution of young Greenland halibut, roundnose grenadier and mentella redfish.

Fig. 15. Geographical distribution of young cod and roughhead grenadier.

D 11

APPENDICES

ICNAF Area	Stratum/ Station	Position Lat N	Long V	reason
3 K	28/1 28/3	49 [°] 37' 49 19	52 ⁰ 26' 52 54	jammed net depth not in range sought
	31/1 33/5 33/6 4 7/1	52 42 51 18 51 27 51 53	52 27 51 45 51 53 50 32	rough bottom steep slop depth not in range sought rough bottom
2 J	211/1 231/1 231/2 230/1 230/2 236/1 203/2 204/2	53 00 52 35 52 00 52 40 53 01 53 50 54 23 54 27	53 12 51 25 51 29 51 29 51 55 52 26 56 01 56 15	depth not in range sought rough bottom " " " " " " " "
2 H	н 33/6 н 35/1	55 23 55 53	58 25 57 20	rought bottom rough bottom, steep slope
	H 35/2	55 33	56 45	• #
2 G	G 8/3 G 21/1 G 22/1 G 22/2 G 14/1	60 23 58 17 58 17 57 53 59 27	61 00 60 05 60 00 59 50 60 15	dpth not in range sought "" " rough bottom
0	0 21/3 0 21/1	61 10 61 34	62 05 62 1 5	17 11

Appendix	1.	Non	fishable	stations

• .

Appendix 2 Catch and environmental data

Ainthe Station	Lokal Hme Hme	dapih (m)	temp. (°C)	S. ment. {kg}	R. hipp. (Kg)	Mirup. (Kg)	time group
54						†	1
459	22.3	329	3,97	408	40	0	0
160	2.3	323	6.06	I H	23	ŏ	l õ
164	49	337	3.04	i ig i	5	l õ	ž
462	I IG	3.32	3.46	975	č	l õ	1 2
163	12 4	526	3.98	4205	13		Ĩ
164	46.8	446	5.60	337	2	ň	
465	41.7	470	1.00	357	3	ŏ	
166	16	770	3 82	470	54	334	i õ
467	52	585	3.89	277	24	27	3
168	99	342	3.60	ion	2	Ö	Ī
163	44.G	328	3.63	456	õ	ō	i i
470	198	337	3.60	432	Ī	ō	1 2
114	23.8	309	3 20	36	8	ō	õ
472	33	306	3.29	1.1		ŏ	1
475	72	345	1.60	82	4	Ň	
136	42	58	5.67	357	ġ	ŏ	1
115			101	446	Ť	Ď	c i
416	412	641	40T	107	Ż	¥	2

App. 2 (continued)

				6		M	1
Area	Lokal	depth	temp.	S. ment.	S.nipp.	n. rup.	group
Station	agnt-kn)	(m)	(0)	(Kg)	(Ng)	(~g)	4 - <u>cos (t-45)</u>
<u> </u>					17		
13K 177	222	785	3.75	520	4† 7	1	%
178	4,0	413	4,29	010	21	0	5
179	7.8	562	_	320	31	4	- J - I
180	15.8	+31	1 50			т Л	i i
181	0.5	319	3,33	J FI	2	ň	I
104	120	6.2.9	2.09	16	10	ñ	3
100	101	200	2.05	10	30	ŏ	Ĩ
104	50	325	2.71	2.50	29	ŏ	i i i
486	40.2	453	343	1	Ĩž	Ō	Ì
191	166	435	3.05	10	54	ŏ	5
488	204	327		51	35	Ō	1
189	68	365	3.02	23	26	0	4
490	40.8	47G	2.91	3	77	0	Ŧ
191	14.8	338	2.33	220	8	0	6
492	19,1	358	2.72	99	25	0	2
193	233	465	2.82	2	405	0	ļ Ģ
194	6,7	375	1.16	2	88	Q	4
495	15,8	318	2.18	44	26	0	6
[2]		}					
50	49.0	332	326	139	145	0	2
51	22.6	418	264	28	90	0	
52	3.7	480	3,53	42	321	0	1 7
53	9.5	365	1.36	104	174		
54	41.7	381	142	1+1	150		5
55	16,7	509	241	34	150	l ñ	1 1
56	203	5+5	3.43	2	60	ŏ	l o
57	0,5	310	6.41	4 201	42	ŏ	Ī
56	10.5	248		4372	ŝ	l õ	Ì Ì
53	14.1	368	3 72	643	6	ŏ	Ż
	90	4.36	3.62	56	18	Ō	6
62	126	489	346	43	140	0	7
63	412	533	3.29	9	135	0	4
64	20.3	504	339	10	68	0	1
65	0.9	449	3.30	163	56	0	0
66	4.8	311	3.07	470	122		2
68	14.6	667	4.01	185	127	31	†
69	47.5	4 78	4.22	384	124		1 7
10	20.9	341	3.63	564 Tot	132		
1	0.3	495	1 4 18	100	1 30	AC	2
72	4.0	624	4.10	CTC ALC	40 12	244	Ĩ
43	5.8	551	4.04 L 10	3425	RA	1	1 7
++	120	441	1 1.10	4,500	1 150	6	6
¢	120 201	375 2/L	1 2 20	378	352	Ō	1
10 11	10.5 0E	-707 1.20	L 24	456	90	Ó	0
71	TR	630	1 1 21	1 4 78	475	92	5
80	1.0 11	830	4.00	2	24	396	Ŧ
A5	5.0	487	1.68	3	241	0	2
	9.4	321	0.31	10	34	0	Ŧ
84	21.3	321	0.37	0	375	0	0
2H		Į			1		
147	15.5	375	3.95	657	168	0	6
148	18.3	443	4.01	100	132	206	0
149	22,3	357	3,17	1 63	165	1 0	I V

App. 2 (continued)

Area Station	Lokal time (=GMT-kh)	depth (m)	temp. (°C)	5 ment. (kg)	R. hipp. (Kg)	M.rup. (Kg)	time group 4- <u>cos (+-15)</u>
211150	1.8	573	4,15	39	108	33	
151	6.8	322	3.41	42	35	0	Ĭ
152	9,1	382	396	78	29	i õ	
153	13.2	546	3 52	3	96	l õ	I T
154	16.8	611	3.53	l õ	88	ŏ	5
455	19.8	636	3 15	L L	200		2
456	52	43		1 11	126	Ň	
457	88	3.64	3.54	44	70		1
458	14.2	323	224	57	TA3	0	6
ີ່ລຸ	1.42	245	<i>2</i> ,3	51	517	U	+
49L	24.4	395	1 01	56	400		
436	21.7		100	60	100		
140	25.0 1.1	777	2.33	90	7J 70	10	
126	+.4	++5	3,60	4	+3	- 35	4
127	8.2	546	3.51	2	+	0	6
134	5.5	434	Q.86	0	185	0	3
136	16,3	450	—	3	168	0	5
137	49.3	501	4.18	7	281	0	2
138	23.Ŧ	533	3.69	4	78	0	Ó
139	46	410	4.89	· 4.	446	ō	2
140	94	585	L 28	40	843	õ	Ŧ
-164	47.6	463	4.4L	45	566	ŏ	1
46.2	AC C	403	3.00		24	0	T E
144	78.0	101	200	7.77	21	10	5
143	10.1	400	2+1	121	+11	36	
199	76.†	321	5.61	43	1010	0	5
145	20,6	545	3.82	53	274	478	1
146	7.3	304	3,80	5+0	101	0	5
0	• -		• •		• •		_
8 7	9.5	.569	1.64	2	36	0	Ŧ
88	13.2	314	1.02	0	12	0	, ∓ - I
89	22.4	455	1.05	+	8	0	0
90	3.1	549	1.14	0	13	0	1
91	T.L.	600	4.47	÷	16	ŏ	5
92	42.5	348	044	+	15	ň	Ĩ
92	45.9	342	0.40	- I	40	ŏ	L L
Q.	10.0	224	0.59	o l	44	ň	2
95	13.3	624	0.55		26		2
- J-3 0r	0.0	100	0.51		4.5		2 L
36	9,1	360	0.05		3	Š I	+
31	10.6	263	0.54	-4	23	0	+
38	15,5	469	1,34	29	264	0	6
- 39	19.0	463	1.48	- 38	297	0	2
400	23.4	377	Q92	- (Ŧ	32	0	0
101	5,6	606	2.09	26	188	9	3
102	12,4	843	3.56	0	16	84	7
110	41.5	316	0.61	21	19	0	7
- 111 -	151	369	103	20 İ	43	o I	Ġ
112	21.0	794	2.36	+	18	- 1	1
443	3.8	808	257	Ó	48	78	i i
41	86	11	2⊾0	422	102	ň	ż I
AAE	43.0	821	2.73	2	92	22	10
211 110	ALC	5 AT	2.00	200	J6 111	64	t e
110	20.2	507	2.33	2400	174	Ž I	2
111	242	363	4,10	240 La	101	<u> </u>	1
118	0.1	563	4.14	40	20	0	0
129	Z1 9	<u>410</u>	2.04	32	150	0	0
- 131	9,1	374	1.Ŧ0	4	87 I	0	6