the Northwest Atlantic Fisheries

D. S. Miller and J. E. Carscadden<br>Fisheries and Marine Service, Newfoundland Environment Centre St. John's, Newfoundland, Canada

## Introduction

Since 1972, substantial catches of capelin have been made in ICNAF Div. 2J3K by an offshore trawler fleet operating in the fall of the year. At this time capelin are schooling and feeding in preparation for the overwintering period.

Estimates of capelin biomass by acoustic and photogrammetric methods have been produced since 1974 (Serebrov et al 1975, Bakenev et al 1976, Klochkov et al 1977, Bakanev and Seliverstov 1978, MiTTer et al 1978).

This paper discusses the biological characteristics of capelin occurring in Div. 2J3K in 1978. In addition, a sequential capelin abundance model for this stock is presented and discussed.

Catch and Catch per Unit Effort
Catches in ICNAF Subarea 2 and Div. 3K showed an increase from 1972 to 1976 but have declined in 1977 and 1978. (Fig. 1). Estimates of C/E reveal a decline in 1977 and 1978 for 2 J and a decline from 1976 to 1978 for Div. 3K. Combined estimates for C/E for 2 J 3 K show a peak in 1974 and a general decline through to 1978. The estimates of C/E for 1978 are less than half of the estimates for 1974 (Table 1).

Table 1. Estimates of catch per unit effort (fishing day) for USSR trawlers >2000 GRT fishing capelin in ICNAF Div. 2J and 3K.

| Year | Div. 2J | Div. 3K | Div. 2J3K |
| :--- | :---: | :---: | :---: |
| 1972 | 24.2 | 32.6 | 28.7 |
| 1973 | 35.0 | 39.2 | 37.2 |
| 1974 | 64.4 | 51.5 | 59.8 |
| 1975 | 40.0 | 53.3 | 43.3 |
| 1976 | 43.3 | 42.1 | 42.6 |
| 1977 | 38.4 | 38.1 | 38.3 |
| $1978^{*}$ | 22.4 | 22.1 | 22.2 |

[^0]
## Biological Characteristics

All data in this section unless otherwise specified were collected from commercial catches by Canadian Foreign Fisheries Observer Program.

Catches of capelin in Div. 2J3K in 1978 showed variation in age-composition by month. Most of the catches in 2J occurred in August and September and older fish predominated in these catches (Fig. 2). For males, the 1975 year-class and for females, the 1973 year-class was strongest.

In Div. 3K, two year-old fish were common during August and September; the proportions of 2 year-olds declined but one year-olds appeared in the catches (Fig. 3). In this respect one year-old capelin were unusually strong; although one year-olds have been recorded in other years (Bakanev and Seliverstov 1978) they were more apparent during the 1978 fishing season. The 1975, 1974 and 1973 year-classes were about of equal strength in females but in males the 1975 year-class predominated.

Capelin from Div. 2J were larger at age than capelin from Div. 3K (Table 2). The higher proportions of immature fish from samples in Div. 3K may account for the smaller mean length-at-age.

Large proportions of the one and two year-olds were maturing (Table 3). It is difficult to evaluate the significance of this finding. It may indicate that the 1977 year-class is faster growing than normal and is maturing at an earlier age. This would be unusual since Winters (1974) reported that capelin from the northern stock tended to grow more slowly and mature at a later age.

Table 2. Mean lengths of capel in from commercial catches in ICNAF Div. 2J and 3K, 1978.

|  | Age |  |  |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Males | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |  |
| Div. 2J |  | 152 | 182 | 186 | 193 | 188 |  |  |  |
| Div. 3K | 126 | 151 | 166 | 174 | 180 | 174 | 233 |  |  |
| Females |  |  |  |  |  |  |  |  |  |
| Div. 2J |  | 147 | 168 | 178 | 186 | 192 | 201 | 202 |  |
| Div. 3K | 123 | 143 | 158 | 172 | 181 | 187 | 195 |  |  |

Table 3. Proportions of mature capelin by month, sex and age in samples from commercial capelin fishery in ICNAF Div. 2J and 3K, 1978.

| Males | Age |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Month | 1 | 2 | 3 |  | 4 | 5 |  |
| Aug. |  | 100 | 100 | 75 | 66 | 100 |  |
| Sept. | 100 | 100 | 100 | 100 | 100 |  |  |
| Oct. | 43 | 94 | 99 | 100 | 100 | 100 |  |
| Nov. | 67 | 86 | 100 | 98 | 85 | 58 |  |
|  |  |  |  |  |  |  |  |
| Females |  |  |  |  |  |  |  |
| Aug. |  | 100 | 100 | 100 | 100 | 100 |  |
| Sept. | 100 | 100 | 100 | 100 | 100 | 100 |  |
| Oct. | 34 | 83 | 100 | 100 | 100 | 100 |  |
| Nov. | 39 | 78 | 99 | 99 | 98 | 98 |  |

On the other hand, high proportions of mature fish in the younger age-groups may simply reflect a behavioral pattern of matures and immatures forming separate schools. In our research vessel samples taken between Oct. 8-30, 1978, we found that the proportions of inmatures in a set varied between $0 \%$ and $95 \%$ (Table 4).

Table 4. Maturity composition of capelin and set details from Gadus Atlantica 14, 0ct. 8-30, 1978.

| Set No. | Date | Position | No. Males | \% Inmature | No. Females | \% Immature | Total of Immature |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Oct. 8 | 50-00N, 54-06W | 114 | 82 | 86 | 94 | 87 |
| 2 | 0ct. 9 | $50-1 \mathrm{~N}, ~ 56-04 \mathrm{~W}$ | 21 | 29 | 179 | 0 | 3 |
| 3 | Oct. 9 | 50-13N, 54-25W | 102 | 0 | 98 | 0 | 0 |
| 6 | Oct. 10 | 50-29N, 54-48W | 116 | 0 | 84 | 0 | 0 |
| 7 | Oct. 11 | $50-32 \mathrm{~N}, 55-48 \mathrm{~N}$ | 54 | 7 | 146 | 5 | 6 |
| 22 | Oct. 22 | 50-52N, 54-21W | 120 | 3 | 80 | 5 | 4 |
| 23 | Oct. 23 | 50-22N, 54-36W | 107 | 0 | 93 | 0 | 0 |
| 26 | Oct. 26 | 50-06N, 54-40W | 99 | 77 | 101 | 64 | 70 |
| 27 | Oct. 26 | $50-04 \mathrm{~N}, 55-36 \mathrm{~W}$ | 99 | 96 | 101 | 95 | 95 |
| 29 | Oct. 27 | 50-48N, 55-19W | 92 | 27 | 108 | 12 | 19 |
| 30 | Oct. 28 | 50-36N, 54-52W | 88 | 13 | 112 | 13 | 13 |
| 33 | Oct. 29 | 50-28N, 55-02W | 98 | 33 | 102 | 21 | 27 |
| 34 | Oct. 30 | 50-02N, 54-43W | 97 | 9 | 103 | 8 | 9 |
| 35 | Oct. 30 | 50-33N, 54-58W | 110 | 73 | 90 | 69 | 71 |
| Mean |  |  |  | 31 |  | 25 | 28 |

## Sequential Capelin Abundance Model 2J3K (SCAM 2J3K)

## (1) Seasonal Aspects of the Model:

Because the fishery occurs during only a portion of the year and not during spawning, the model was designed to account for the timing of these events.

The year is assumed to be a calendar year that is, 1 January-31 December. The period from 1 January to 1 July is considered to be a pre-spawning period with only natural mortality occurring. Spawning is assumed to occur on 1 July of each year and is treated as an instantaneous event. Between 1 July and 1 September only natural mortality occurs on the spawning survivors, immature fish and maturing fish. It is assumed that by 1 September fish that were immature and did not spawn during the preceding spawning period have now matured and will spawn the following year. It is assumed that the fishery occurs on both mature and immature fish from 1 September to 31 December.
(2) Natural Mortality and Spawning Mortality:

Natural mortality is 0.3 throughout. Spawning mortalities are from Carscadden and Miller (1979). Thus, for ages $3-5$ spawning mortality is 1.94.
(3) Proportions Mature at Age:

The values for $\mathrm{p}=$ proportions mature at age are from Carscadden and Miller (1979) and are assumed to be that proportion of fish mature after the fishery and at the start of the next year. For instance, after the fishery on age 2, the value for $p$ on January 1 of the following year will be 0.6 (age 3 ).

| Age | p |
| :---: | ---: |
| 2 | 0 |
| 3 | .6 |
| 4 | .9 |
| 5 | 1.0 |

(4) Ages used in the Model:

Ages 2 to 5, inclusive, are used in the mode?.
(5) Numbers-at-age:

Numbers-at-age for 1972-1977 were calculated separately for 2 J and 3 K and then combined. Mean weights for individual fish were taken from Fig. 2 of Bakanev and Seliverstov (1978). Percent age compositions in Div. 2J and 3 K for 1972, 1974, 1975 and 2J-1973, 3K-1976 were from Fig. 2 of Bakanev and Seliverstov (1978). Percent age compositions for 2 J in 1976 was fromKostantinow and Noskov (1977) and for 2J3K in 1977 was from Konstantinov and Noskov (1978). Estimates of percent age-composition for Div. 3 K in 1973 was from Canadian sampling data.

Numbers-at-age for 1978 were also calculated separately from data collected by the Canadian Foreign Fisheries Observer Program. Weights of individual capelin by sex by month were estimated using length-weight regressions constructed from Canadian research data.

Numbers-at-age and mean-weights-at-age are found in Table 5.

Table 5. Numbers-at-age ( $000^{\prime} \mathrm{s}$ ) removed by Div. $2 \mathrm{~J}+3 \mathrm{~K}$ capelin fishery and mean weight (gm) at each age used in the model.

| Age | 1972 | 1973 |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |

(6) Partial Recruitment and Fishing Mortality:

It was assumed that fishing takes both matures and immatures. Estimates of partial recruitment and starting fishing mortality were estimated in 2 ways.
a. Examination of the distribution of $F$ with age for the years 1972-1975 from initial runs of the model was made. The values of $F$ for each age in these 4 years were averaged and expressed as a proportion of the largest $F$ (i.e. from the oldest age group, age 5) to give estimates of partial recruitment (Table 6).

Values of starting $F$ for the oldest age group in each year were selected as in Carsicadden and Miller (1979). A number of runs of the model using values of starting $F$ from 0.01 to 1.00 were made. Estimates of fishing effort for 1972-1978 were made by dividing the total catches by the C/E of USSR trawlers $>2000$ GRT. Using values of $F$ on fully recruited age groups and effort for the years 1972-1977 functional regressions were calculated. Values for $r$ and predicted $F$ did not vary greatiy over a wide range of starting $F^{\prime}$ s from 0.1 to 1.0 . Therefore, the predicted value of $F=0.213$ was chosen since it fell in approximately the middle of the range of predicted $\mathrm{F}^{\prime}$ s (Table 7).

In calculating the functional regressions the value for effort in 1976 was considered to be abnomal and was not used. Estimates of C/E were constant throughout the 1976 fishing season and lower than 1974 and 1975. This was unusual considering that the 1973 year-class was abuncant as 3 year-olds and the total catch was good. Klochkov et al (1977) reported that stationary overwintering concentrations of capelin were formed one month later than usual. This suggests that capelin were more dispersed earlier in the season thus reducing the catch per unit effort.
b. For each age group in each year, catch per unit effort was calculated by dividing the removals at age by the total effort as calculated above. Then functional regressions were calculated for each age group with catch per effort for each age-class as the x-variable and numbers-at-age at the start of the year predicted from the model $(F=.213)$ as the $y$-variable (Table 8). Thus, there was a regression for each age-class and using the $C / E$ for 1978, an estimate of the numbers at each age was predicted. Partial recruitment and values of $F$ were then estimated. This method gave a starting $F$ of 0.200 .

Table 6. Estimates of partial recruitment used with $F=0.213$.
Age $\quad$ Partial recruitment

Table 7. Coefficients and $r^{2}$ values and predicted values of $F$ for functional regressions at different values of starting $F$.

| Starting $F$ | 0.1 | 0.2 | 0.5 | 1.0 |
| :---: | :---: | :---: | :---: | :---: |
| $r^{2}$ | .86 | .92 | .93 | .93 |
| a | -0.16024 | -0.169560 | -0.77985 | -0.174000 |
| b | 0.000152 | 0.000163 | 0.000175 | 0.000175 |
| Predicted $F$ | 0.196 | 0.213 | 0.231 | 0.237 |

Table 8. Coefficients and $r^{2}$ values for functional regressions for each age, predicted fishing mortality $F$ and calculated partial recruitment.

|  | Age |  |  |  |
| :--- | :---: | :---: | :---: | :---: |
|  | 2 | $3^{*}$ | 4 | 5 |
| $r^{2}$ | .88 | .98 | .83 | .89 |
| a $\left(\times 10^{6}\right)$ | 31.42 | 16.97 | 31.05 | 2.94 |
| b $\left(\times 10^{6}\right)$ | .19848 | .11028 | .00568 | .02692 |
| Predicted F | .007 | .037 | .118 | .200 |
| Partial Recruit | .035 | .185 | .590 | 1.00 |

* Values for 1972 and 1974 not used.
(7) The Model:

A schematic representation of the model is given in Appendix A.
(A) The exploitation rate $\mu$ in year N is

$$
\mu=\frac{F}{F+M D F} \quad \text { (for oldest age-class) }
$$

or

$$
\left.\mu=\frac{F}{F+M D F} \text { (1- } e^{-F-M D F}\right) \quad \text { (for younger age-classes) }
$$

where natural mortality during fishing, $M D F=0.1$.
The total population before fishing $T P_{B F N}$ is calculated by $T P_{B F N}=\frac{C}{u}$.
This estimate of $T_{B F N}$ includes both matures and immatures and is an estimate of the size of the year-class before the fishery.

The size of the population after spawning $\mathrm{TP}_{\text {ASN }}$ is calculated by

$$
T P_{A S N}=T P_{B F N} e^{M A S}
$$

where the natural mortality before fishing and after spawning MAS $=0.05$. The population after spawning is composed of spawning survivors ( $\mathrm{PM}_{\text {ASN }}$ ) and immature fish ( PIM $_{\text {ASN }}$ ).

Thus, $\mathrm{TP}_{\text {ASN }}=\mathrm{PM}_{\text {ASN }}+$ PIM $_{\text {ASN }}$
Al though we do not know the proportions mature ( pM ) and proportions immatures ( pIM ) after spawning, we do know the value of p , the proportions of capelin mature at the start of the year as well as spawning mortality (SM) and natural mortality before spawning (MBS).

$$
\text { Thus, } \begin{array}{r}
\mathrm{TP}_{\text {ASN }} \times \mathrm{pM}=\mathrm{PM}_{\mathrm{ASN}} \\
\mathrm{TP}_{\text {ASN }} \times \mathrm{pIM}=\mathrm{PIM}_{\text {ASN }}
\end{array}
$$

(B) and $P M_{A S N} e^{S M+M B S}$ gives $P M_{B Y N}$
PIM $_{\text {ASN }} e^{\text {MBS }} \quad$ gives PIM BYN
(C) The total population at the beginning of the year $\mathrm{TP}_{\mathrm{BYN}}$ is composed of $P_{B Y N}$, the population of matures plus PIM ${ }_{B Y N}$, the population of immatures. The proportion mature $\oplus=P M_{B Y N} / T_{B Y N}$.

Al though the numbers of matures and inmatures after spawning are not known, there is a unique algebraic solution (see Appendix $B$ ) to the problem and $\mathrm{TP}_{\mathrm{BYN}}$
can be calculated.
(D) We know the value of $\mathrm{TB}_{\mathrm{BYN}}$ which is the population size after the fishery in year $\mathrm{N}-1$. Since we have an estimate of catch in year $\mathrm{N}-1$ and MDF, a value for $F$ can be calculated.

Then, $T_{B Y N} e^{F+M D F}+$ MAS gives $T P_{A S N-1}$
The model is continued for each year-class in the population.

## Results from the SCAM 2J3K Model

Population and total biomass estimates, calculated fishing mortality and total population and mature biomass at the beginning of 1979 (starting $F=0.213$ ) are found in Tables 9, 10 and 11, respectively. Similar results using a starting $F$ of 0.200 given in Table 12, 13, and 14.

Although the values of starting $F$ are similar the results differ especially for the years 1976-1978. In these years, total calculated biomass is over 1 million tons higher in each year with a starting value of $F=0.200$. However, both runs of the model indicate similar trends in total biomass levels especially for the first four years of the analysis. The calculated biomass in 1972 was moderate at about 5 milli ion tons, then dropped in 1973 and 1974 to about 3.5 million tons and subsequently rose to about 6.5 million tons in 1975. In 1976, the model run with $F=0.200$ shows the highest biomass at about 7.3 million tons While the run at $F=0.213$ indicates the total biomass remained at about 6.5 million tons. The high biomass levels in 1975 and 1976 are probably the result of the presence of the strong 1973 year-class.

Both model runs exhibited a decline in biomass in 1977 and 1978. The model run with $F=0.200$ indicated that the 1978 biomass was about the same as 1973 and 1974, but the other run with $F=0.213$ showed the biomass in 1978 was lower than any of the previous years.

Table 9. Total population (000's), total biomass ( 000 tons) and biomass ( 000 tons) of mature fish at beginning of year in Div $2 \mathrm{~J}+3 \mathrm{~K}$. (Startinq $\mathrm{F}=0.213$.)

| Age | 1972 | 1973 | 1974 | 1975 |  | 1976 | 1977 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | $80,038,262$ | $46,469,417$ | $113,523,713$ | $254,325,038$ | $74,677,770$ | $39,864,096$ | $34,531,573$ |
| 3 | $132,821,064$ | $59,198,088$ | $33,370,783$ | $83,490,027$ | $183,493,968$ | $54,012,145$ | $29,391,749$ |
| 4 | $23,515,905$ | $46,405,806$ | $20,360,269$ | $9,752,410$ | $27,376,877$ | $58,856,173$ | $17,939,766$ |
| 5 | 613,940 | $3,576,566$ | $5,496,610$ | $2,887,499$ | 868,907 | $4,196,622$ | $6,813,540$ |
| Total <br> biomass | 3,489 | 2,636 | 2,324 | 4,187 | 4,338 | 2,310 | 1,453 |
| Mature <br> Biomass | 1,792 | 1,685 | 929 | 1,093 | 2,365 | 1,927 | 878 |

Table 10. Calculated values of fishing mortality on total
population in Div. $2 \mathrm{~J}+3 \mathrm{~K}$. (Starting $\mathrm{F}=0.213$.)

| Age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 2 | 0.002 | 0.031 | 0.007 | 0.026 | 0.024 | 0.005 | 0.011 |
| 3 | 0.030 | 0.046 | 0.209 | 0.094 | 0.116 | 0.081 | 0.064 |
| 4 | 0.111 | 0.361 | 0.181 | 0.645 | 0.103 | 0.384 | 0.207 |
| 5 | 0.111 | 0.361 | 0.209 | 0.645 | 0.116 | 0.384 | 0.213 |

Table 11. Total population ( 000 's) and mature biomass (tons) at the beginning of
1979. (Starting $\mathrm{F}=0.213$.)

| Age | Jan. 1, 1979 |
| :---: | :---: |
| 2 | $73,000,000$ |
| 3 | $25,310,620$ |
| 4 | $9,931,631$ |
| 5 | $2,478,943$ |
| Mature biomass | 533,000 |

The estimates of mature biomass at the start of 1979, 0.72 and 1.19 million metric tons, are similar to the acoustic estimate of .75 million metric tons (Miller and-Carscadden 1979).

Both runs of the model showed that the 1969 and 1973 year-classes were strong with the 1973 year-class being about 1.5 times more abundant than the 1969 year-class. The run of the model with starting $F=0.200$ suggested that the 1975 and 1976 year-classes were of moderate strength but much weaker than both the 1969 and 1973 year-classes. With the other model run ( $F=0.213$ ), the 1975 and 1976 year-classes appear to be less abundant than previous year-classes.

The sensitivity of the model with different levels of $p$, proportions mature at age 4 , was tested. When the value of $p$ was decreased by $1 \%$, the maximum change in total population was an increase of $2.8 \%$ and the maximum change in $F$ on the oldest age group was a decrease of $3.7 \%$. These values were identical for runs of the model at $F=0.200$ and $F=0.213$.

Table 12. Total population ( 000 's) total biomass ( 000 tons ) and biomass ( 000 tons) of mature fish at beginning of year in Div. 2J+3K. (Starting $F=0.200$.)

| Age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 80,077,856 | 46,586,915 | 113,852,984 | 257,449,329 | 120,280,980 | 67,816,350 | 52,443,267 |
| 3 | 132,905,173 | 59,227,420 | 33,457,827 | 83,733,955 | 185,808,492 | 87,795,510 | 50,099,077 |
| 4 | 23,519,492 | 46,436,102 | 20,370,834 | 9,783,748 | 27,464,732 | 59,690,019 | 30,108,206 |
| 5 | 613,987 | 3,577,176 | 5,501,755 | 2,889,293 | 874,296 | 4,211,547 | 6,955,035 |
| Total <br> Biomass | 3,491 | 2,639 | 2,329 | 4,223 | 4,833 | 3,644 | 2,259 |
| Mature Biomass | 1,793 | 1,686 | 930 | 1,096 | 2,535 | 2,266 | 1,345 |

Table 13. Calculated values of fishing mortality on total population in Div. $2 \mathrm{~J}+3 \mathrm{~K}$. (Starting $\mathrm{F}=0.200$.)

| Age | 1972 | 1973 | 1974 | 1975 | 1976 | 1977 | 1978 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 0.002 | 0.031 | 0.007 | 0.026 | 0.015 | 0.003 | 0.007 |
| 3 | 0.030 | 0.046 | 0.208 | 0.094 | 0.114 | 0.049 | 0.037 |
| 4 | 0.111 | 0.360 | 0.181 | 0.642 | 0.102 | 0.377 | 0.118 |
| 5 | 0.111 | 0.360 | 0.208 | 0.642 | 0.114 | 0.377 | 0.200 |

Table 14. Total population (000's) and mature biomass (tons) at the beginning of 1979. (Starting $F=0.200$. )

| Age | Jan. 1, 1979 |
| :---: | :---: |
| 2 | $89,700,000$ |
| 3 | $38,579,921$ |
| 4 | $17,390,313$ |
| 5 | $4,545,874$ |
| Mature biomass | 884,000 |

## Discussion

The results of SCAM 2J3K illustrate the impact of strong year-classes on the estimates of capelin biomass. Biomass levels were high in 1972 because of the strong 1969 year-class and also in 1975 and 1976 because of the strong 1973 year-class. In years when strong year-classes were absent, average total biomass levels were in the order of 3.5 million metric tons while the average mature biomass was 1.2-2.5 million metric tons.

Winters and Carscadden (1978) estimated that the annual consumption of capelin by cod in 2 J 3 KL during 1947 -1951 was approximately 3.97 million metric tons. However, during approximately the next two decades this cod stock declined and annual consumption of capelin by cod was estimated to be approximately 3.0 million metric tons. In the same paper, it was estimated that 300,000 metric tons of capelin were eaten by the present stock of harp seals and that approximately 250,000 tons of capel in were eaten by fin whales. In total, these predators
consumed approximately 3.5 million metric tons of capelin annually during the years that their stocks were low. Minet and Perodou (1978) estimated that cod in 2 J 3 KL consumed $2.0-3.4$ million metric tons of capelin annually during the period 1965-1969.

These estimates of annual consumption of capelin are not directly comparable to the population estimates of capelin for Div. 2J3K. The cod feeding estimates were derived for the 2 J 3 KL cod stock; the seal and whale feeding estimates were derived for the Newfoundland and Labrador area as a whole. It is reasonable to assume then that feeding by predators in the 2J3K area only would be lower than 3.5 million metric tons. Thus, under conditions of average recruitment in the 2J3K capelin stock, the supply of capelin would be in excess of the needs of the three major capelin predators.

The stock size of capelin in 1978 was below average. The presence of the 1977 year-class as one year-olds (not included in our calculations) and the reduced stock of mature fish in 1978 probably contributed to the decrease in catch and catch per effort in 1978.

The data from the commercial fishery indicated that the 1977 year-class was relatively abundant. Comparisons of this year-class with the strong 1969 and 1973 year-classes are not possible at this time. However, caution should be exercised in analyzing these data because the relatively poor abundance of the 2 and 3 year-olds in 1978 may lead to a conclusion that the 1977 year-class is stronger than it actually is. Thus, we would recommend that for purposes of estimating recruitment, the 1977 year-class should be considered to be of average strength.

## Acknowledgements

We thank Dr. G.H. Winters and Dr. W. Doubleday for advice and comments during preparation of this paper.

## References

Bakanev, V.S. and A.S. Seliverstov. 1978. Capelin investigations in the waters off southern Labrador (Division 2J) and on the north Newfoundland Bank (Division 3K) in the autumn of 1974. ICNAF Res. Doc. 78/VI/30. Ser. No. 5191.

Bakanev, V.S., A.S. Seliverstov and L.I. Serebrov. 1976. Preliminary instrument estimate of abundance and biomass of capelin off South Labrador and the North Newfoundland Bank (Divisions 2J and 3K). ICNAF Res. Doc. 76/VI/54. Ser. No. 3840 .

Carscadden, J.E. and D.S. Miller. 1979. Biological aspects of capelin and a sequential capelin abundance model for the Division 3LN0 stock. ICNAF Res. Doc. 79/II/33 Ser. No. 5359.

Klochkov, D.N., A.S. Seliverstov and L.I. Serebrov. 1977. Estimate of capelin stocks in the south Labrador and northern Newfoundland Bank areas in autumn, 1976 (Divisions 2 J and 3K). ICNAF Res. Doc. 77/VI/33. Ser. No. 5058.

Konstantinov, K.G. and A.S. Noskov. 1977. Report on the USSR investigations in the ICNAF area, 1976. ICNAF Summ. Doc. 77/VI/15. Ser. No. 5071.
1978. Report of USSR investigations in the ICNAF area, 1977. ICNAF Summ. Doc. 78/VI/9. Ser. No. 5196.

Miller, D.S. and J.L. Carscadden. 19/9. An Acoustic Lstimate of Capelin Biomass, ICNAF Divisions 2J and 3K, Oct. 1978.
ICNAF Res. Doc. 79/ii/34. Ser. No. 5360.
Miller, D.S., J.E. Carscadden and B. Bennett. 1978. An acoustic estimate of capelin (Mallotus villosus) biomass, ICNAF Divisions 2 J and 3 K , October and November 1979. ICN̄̄ि Res. Doc. 78/VI/43. Ser. No. 5205.

Minet, J.P. and J.B. Perodou. 1978. Predation of cod, Gadus morhua, on capelin, Mallotus villosus, off eastern Newfoundland and in the Gulf of St. Lawrence. ICNAF Res. Bull. 13: 11-20.

Serebrov, L.I., V.S. Bakanev and S.M. Kovalev. 1975. The condition of Newfoundland capelin stock. ICNAF Res. Doc. 75/7. Ser. No. 3435.

Winters, G.H. 1974. Back-calculation of the growth of capelin (Mallotus villosus) in the Newfoundland area. ICNAF Res. Doc. 74/7. Ser. No. 3150.

Winters, G.H. and J.E. Carscadden. 1978. Review of capelin ecology and estimation of surplus yield from predator dynamics. ICNAF Res. Bull. 13: 21-30.


Fig. 1. Catches of capel in in ICNAF Subarea 2 and Div. 3 K from 1972-1978.


Fig. 2. Age composition of capelin in commercial catches from ICNAF Div. 2 J in 1978.


Fig. 3. Age composition of capelin in commercial catches from ICNAF Div. 3K in 1978.

## Schematic Representation of SCAM 2J3K

```
SM = spawning mortality
MDF = natural mortality during fishery (1 Sept.-31 Dec.)
MAS = natural mortality after spawning (1 July -1 Sept.)
MBS = natural mortality before spawning (1 Jan. - 1 July)
```

(A) $\mu=\frac{F}{F+M D F} \quad$ (for oldest age class)
or
$\mu=\frac{F}{F+M D F}\left(1-e^{-F-M D F}\right)$ (for younger age-classes)
$\left.\frac{C N}{\mu} \longrightarrow T P_{B F N} e^{M A S} \longrightarrow T_{A S N}\right\} \begin{aligned} & \times \mathrm{pM} \longrightarrow \mathrm{PM} \\ & \times \mathrm{PIM} \longrightarrow \mathrm{PIM}_{\text {ASN }}\end{aligned}$
(B) $P M_{A S N} e^{S M+M B S} \longrightarrow P M_{B Y N}$

$$
\operatorname{PIM}_{\text {ASN }} e^{M B S} \quad \longrightarrow \mathrm{PIM}_{\text {BYN }}
$$

(c) $T P_{B Y N}=P M_{B Y N}+P_{B M} M_{B Y N}$

$$
\mathrm{pN}=P M_{B Y N} \quad T P_{B Y N}
$$

(D) In year $N-1$

F calculated based on
$\frac{C}{T P_{B Y N}}$ knowing MDF
Then, $\left.\mathrm{TP}_{\mathrm{BYN}} \mathrm{e}^{\mathrm{F}+\mathrm{MDF}+\mathrm{MAS} \longrightarrow \mathrm{TP}_{\mathrm{ASN}-1}}\right\} \begin{aligned} & \mathrm{x} \\ & \mathrm{pM} \longrightarrow \mathrm{pIM} \longrightarrow \mathrm{PM}\end{aligned} \mathrm{PIM} \mathrm{M}_{\mathrm{ASN}} \mathrm{ASN-1}$
$P M_{A S N-1} e^{S M+M B S} \rightarrow P M_{B Y N-1}$
PIM $_{\text {ASN }-1} e^{\text {MBS }} \longrightarrow$ PIM $_{\text {BYN }-1}$
$T P_{B Y N-1}=P M_{B Y N-1}+$ PIM $_{\text {BYN-1 }}$
$\mathrm{pN}-1=\mathrm{PM}_{\mathrm{BYN}} / \mathrm{TP}_{\mathrm{BYN}-1}$

Algebraic solution for determining the number of mature fish after spawning in SCAM 2J3K.
(1) PIM $_{A S}=T P_{A S}-P M_{A S}$
(2) $p=P M_{A S} e^{S M}$
$\frac{A S e^{S M}}{\text { PM }_{A S} e^{S M}+P I M}$
$=\frac{P M_{A S} e^{S M}}{P M_{A S} e^{S M}+T P_{A S}-P M_{A S}} \quad$ (from Eq. 1)
(3) $P M_{A S} S^{S M}+T P_{A S}-P M_{A S}=\frac{P M_{A S} e^{S M}}{\mathrm{p}}$
(4) $\frac{P M_{A S} S^{S M}}{P}+P M_{A S}-P M_{A S} e^{S M}=T P_{A S}$
(5) $\quad P M_{A S}\left(\frac{e^{S M}}{p}-e^{S M}+1\right)=T P_{A S}$
(6) $\quad P M_{A S}=T P_{A S} /\left(\frac{e^{S M}}{p}-e^{S M}+1\right)$

All values on right of equation are known - solve for $\mathrm{PM}_{\text {AS }}$.


[^0]:    * From Canadian FLASH

