the Northwest Atlantic Fisheries

ANNUAL MEETING - JUNE 1979

The Sex Ratio of the Herring Spawning Population in the Georges Bank Area

## by

M. Gledz

Sea Fisheries Inetitute
Gdynia, Poland

## Introduction

The ratio of males to females within a given spawning population influences in a specific way the course of spawning and regulates indirectly the recovery rate of the stock /Makeeva, Nikolskij 1965/.
-The variations of ecological conditions and the influence of fishery can modify the sex ratio in the stock/Nikolskij,1974/. The knowledge of variations of sexual structure of a given population might be of considerable importance in case of species under industrial exploitation. This problem is of particular significance for the herring population of the George Bank area, which was heavy exploited re-
cently /Anthony,1976/.
This paper presents an attempt to evaluate the sex ratio variations of the spawning population of the George Bank herring during the period of 1971 - 1976.

## Materials

The sex ratio was determined in samples collected from separate tows of Polish freezing trawlers/fig.1/conducting directed herring fishery during autumn spawning period on fishing grounds of the ICNF Division 5 Ze within the time period 1971-1976. The fishing
gear applied was a standard pelagic trawl made of polyamide twin, the mesh width of the codend measuring 44 mm . For biological analyses 100 specimen of herring were taken every time from samples counting more than 200 specimen by their share /in \%/within consecutive 1 cm length classes.

Two methods of length measuring were applied:

- to the nearest half centimeter bar of the measuring board. This method was used until 1973,
- to the nearest centimeter below on the one centimeter scale of the measuring board. This method was used after 1973.

Determination of sexes,maturity of gonads and collecting of otholits for ageing were performed. The maturity stages of gonads were estimated applying 8 grade scale, the same as used for herring in the ICES area. This scale was accepted by the ICNAF Standing Committee of Research and Surveys in 1964 and adopted for fisheries investigation in the NW Atlantic area /ICNAF , 1965/.

The samples were collected during August - November for the time period 1971 - 1975 annualy /table 1,fig.1/. For purpose of this investigation 304 length samples and 141 samples for detailed blological analyses of herring were taken. During the whole period 90633 specimen were examined in detail /table 1/.

Table 1. The number of samples collected from board of Polish Freezing trawlers in Division 5Ze during 1971-1976.

| Subarea | 520 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| month |  | VIII | IX | Y | $\overline{\text { II }}$ | Ttotal |
| $\begin{aligned} & \text { longth } \\ & \text { meamenonts } \end{aligned}$ | pumber of mand | 64 | 145 | 86 | 9 | 304 |
|  | manber of fish | 19160 | 43244 | 25ces | 2622 | 99633 |
| blolgegal maplea | muber of sam | 25 | 69 | 43 | 4 | 141 |
|  | uncher of fiah camed | 2472 | 6264 | 4118 | 370 | 13224 |

Method
Prespawning and spawning concentrations of herring occur on fishing grounds of the George Bank during September - October /Boyar, 1971/. For determination of the sex ratio of the spawning concentretions their separating from prespawing concentrations was indispensable.

To achieve this separation the period investigated was divided into time sequences by 10 days intervals and the share of fish /in\%/ of a given stage of maturity was calculated in each time sequence by means of a length - maturity key. Joining the time sequences within which fish with gonads of stages of maturity VI and VII were domina: ting /table 2/ enabled the determination of the assembling time of spawning concentrations during consecutive years.

Table 2. Stages of gonads maturity of herring(in percent) sampled from the Georges Bank area in September-October 1971-1975.

| yenc | month | 80ytorber |  |  | Ootober |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 anys poriod | 1 | 2 | 3 | 1 | 2 | 3 |
|  | atage of Eatur |  |  |  |  |  |  |
| 1971 | IV- |  |  | 45.2 | 13.5 | 11.6 |  |
|  | VI-VII |  |  | 54.3 | 73.0 | 57.4 | 77.8 |
|  | VIII |  |  | . 4 | 4.6 | 30.8 | 22.3 |
| 1972 | TV-V | 79.4 | 26.3 | 23.7 | . 4 |  |  |
|  | TI-VII |  | 16.6 | 64.2 | 99.6 | 103.0 |  |
|  | VIII | . 6 |  |  |  |  |  |
| 1973 | IV-V | 86.6 | 54.6 | 3.3 | 1.6 | 3.7 | $\bullet 4$ |
|  | VI-TII | 7.2 | 43.1 | 81.7 | 97.9 | E3, 3 | S0, ${ }^{2}$ |
|  | III | 1.6 | 1.6 | 14.7 | . 5 | 12.2 | 9.2 |
| 1974 | IV -1 | 91.0 | 52.3 | 23.6 | 20.4 | 10.2 | 14.5 |
|  | VI-VII | 7.1 | 44.8 | 66.1 | 76.0 | 89.8 | 64.6 |
|  | VIII | - | 1.8 | 3.0 | 3.2 | - | 2359 |
| 1975 | TV-7 | 98.6 | 91.9 | 42.2 | 19.6 | 3.8 | 22.7 |
|  | VI-FII | $\bullet$ | 6.1 | 54.0 | 64.1 | 93.8 | 39.5 |
|  | VIII |  | . 3 | $10^{4}$ | 2.7 | 284 | 27.8 |

## The appompaee peried of apawning oomoentrations

For each time sequence the following items were calculated:

- the ratio of males and females in the total number of samples,
- the ratio of males and females within consecutive years,
- the ratio of males and females in successive length classes,
- legth frequency,
- age composition.

The sex ratio within samples or groups of samples was calculated following the formula of Pope /1956/.

$$
\mathrm{p}=-\frac{\mathrm{a}}{\mathrm{u}}-
$$

where: $\quad \mathrm{p}$ - proportion of males or females in sample, a - the number of males or females in sample, u - total number of fish in sample.

## pescussion_and_results

Table 3 presents the ratio of males and females in the sampled spawning concentrations of herring during the time period 1971 - 1976. In order to illustrate $1 t$, an index of sexual structure expressed as ratio between a total number of males and a total number of fish of both sexes $/-\frac{0}{\varnothing}$, was calculated. Its value varried from 0.487 to 0.525 and the mean was equal 0.513 . The deviation from the mean was rather small, and did not exceed $3 \% /$ table $3 /$. These results indicate that sexual structure of the spawning concentrations is stabilised with number of males slightly dominating over number of females.

Table 3. Sex ratio of herring in spawning concentrations expressed as the proportion of males in 1971-76.

| Year | Ratio of males |
| :--- | :---: |
| 1971 | 0.505 |
| 1972 | 0.524 |
| 1973 | 0.522 |
| 1974 | 0.487 |
| 1975 | 0.515 |
| 1976 | 0.525 |
| Mean $\pm 2 S D$ | $0.513 \pm 0.029$ |

In spite of the before said stability of sexual structure wide variations of age and length composition of spawning concentra tions were observed./fig.2/. During-1971 - 1972 the herring population consisted of 3 to 3 years old fish, with age 5 prevailing. In following years the abundant year - class 1970 has recruited to the stock and caused the reduction of modal age in the stock in 1973 and 1974.

The lack of sufficiently strong year-classes during the following years caused that the stock grew older again, which was indicated by domination of 5 year old fish in 1975 and 6 year old in 1976.

The modal lengths of herring altered as well leading to simultaneous changes in the age composition of the stock. During 1971 -1972 fish belonging to the $30-31 \mathrm{~cm} 1$ ength classes prevailed. On the other hand, after that time, the length of dominating lenfth classes decreased initially to 26 cm in 1973 showing however gradual increase during following years up to 32 cm in 1976.

The sex ratio of herring by given age was investigated as well. Therefore the indices of sex ratio were calculated during consecutive years of life/for ages 2 to 8, table4/. The table shows the domination of males within the younger ages and the domination of females within older age-groups. The index value for those year classes altered within a relatively narrow range between $0.569-0.395$. The regressions reflecting the variability of males and females in number by given age intersect each other at a point which delimits on the abschssa axis the age at which males and females are equal in number. This stage herring attains at the age of 4 years.

Table 4. Sex ratio of herring during consecutive years of the life cycle expressed as the proportion of males ( $a=$ age group).

| Age <br> group | No. in <br> sample | Proportion <br> of males | Correlation <br> coefficient | Regression between <br> age groups and ratio |
| :---: | ---: | :---: | :---: | :---: |
| 2 | 27 | 0.569 |  |  |
| 3 | 1664 | 0.518 |  |  |
| 4 | 2017 | 0.491 | $R=-0.94$ | $0.6023-0.0238 \mathrm{a}$ |
| 5 | 1308 | 0.476 |  |  |
| 6 | 625 | 0.488 |  |  |
| 7 | 549 | 0.488 |  |  |
| 8 | 130 | 0.395 |  |  |

Moreover the changes in the male - female ratio by length classes were investigated as well. The regressions illustrating the variations of the ratio in separate length-classes of herring are shown on fig.3. During the period of 1971 - 1975 the length-classes whithin which the number of males and females was equal varied from 28 cm to 31 cm .

From the data presented it results that the sexual structure of the spawning concentrations was stabilized in spite of considerable abundance fluctuations of year classes constituting the herring stock. This phenomenon can be explained by:

- relatively small differences between number of males and females during consecutive years of the life cycle which, in case of herring, did not exceed $20 \%$,
- considerable domination of fish belonging to age - groups 3,4 and 5 consisiting $72 \%$ to $98 \%$ of the spawning population during the time period of 1971 - 1975 /table 5/. /The sex ratio among herring belonging to the $3-5$ year-classes deviated slightly from unity/.

Table 5. Georges Bank herring spawning stock paramters in 1971-1975.

| year | $\begin{aligned} & \text { length elagn wi- } \\ & \text { thin Whiohrs } \\ & \frac{0}{7 \%}=.5 \end{aligned}$ | $\begin{aligned} & \text { mana } \\ & \text { age } \end{aligned}$ | $\begin{aligned} & \text { yar elane by } \\ & \text { marber } x \\ & / 000 / x \end{aligned}$ | percontace amare of age grompa 3,4 and |
| :---: | :---: | :---: | :---: | :---: |
| 1971 | 30.5 an | 5.1 | 3491 | 72 |
| 1972 | 31.2 an | 5.6 | 5659 | 70 |
| 1973 | 28.8 an | 3.3 | 4619 | 77 |
| 1974 | 29.4 an | 4.1 | 3146 | 97 |
| 1975 | 31.409 | 5.1 | 1904 | 95 |

x affer V.C. Arthent 1976

Age-group 4 plays a particular role in the stabilization process of the sexual structure of spawning concentrations. Herring of this age have dominated the spawning concentrations of that stock during last few years. This is the youngest age
group, fully recruited to the adult stock/Benko, Wilson 1962, Boyar 1971/. The sex ratio in age-group 4 is eaual to 1. Similar structure of sexes of the total herring stock was observed during spawning. Fish belonging to age-group 4 play a fundamental role in the process of the stock recovery in case of severe reduction of older year-classes abundance /i.e. due to overfishing/. Moreover, the same year -group can simultaneously balance the sex ratio which, in turn, enables an appropriate course of spawning.

## Conclusions

1. The sex ratio of the spawning concentrations of the George Bank herring stock approximated unity, while males dominated slightly over females. Such situation was maintained during the whole time period from 1971 to 1975 in spite of wide variability of abundance of year-classes forming the adult stock, 2. The vartation between ratio of males to females oscillated from 0.6 to 0.4 in $c$ nsecutive years of the life cycle of one year-class /from age-group 2 to $8 /$. Among young fish / 4 years old and younger/ males dominated, while, among older fish,females were in majority, 3. During the time period 1971 - 1975 the high stability of sex ratic of the spawning populations of herring was secured by:

- small differences between number of males and females in consecutive years of the life cycle,
- domination of fish belonging to age-groups 3,4 and 5 /from $72 \%$ to $97 \% /$. In these age-groups the ratio of males to femeles varried between 1.10 to 0.91 .


## Iterature cited:

1. Anthony V.C. 1976 Report of the ad hoc Working Group on Herring. Eight special commission meeting. January 1976. ICNAF.
2. Benko S.K. 1962 Otkorm 1 fizjologitscheskoe sostoianie: Wilson A.P. sildi Banki Georges w 1961 g . Trudy PINRO 1962 Moskve.
3. Boyar $F$. 1972 Age, length and maturity of adult Herring in Perlins E.E. ICNAF Division 5Z, $5 \mathrm{Y}, 3 \mathrm{X}$ and Subarea 6.ICNAF Clifford R.A. Res.Doc. 72/51.
4. ICNAF 1974. Report of Standing Committee on Research and Statistics, App. I Report of the ad hoc Group on Herring and other pelagic fish. Int. Comm. North Atlant.Fish. Redbook 1964 Part. I
5. Makeeva A.P. 1965 Teoretitscheskoe osnovy rybolovstva. Nikolskij G. Moskva 1965.
6. Nikolskij G. 1964 Teoria dinamiki stada ryb. Pischtschevaa Frordschlemnost, Moskva 1974.
7. Pope A.J. 1956 An Outline of Sampling Techniques. Rapp. Proces.Verb. Reun. Vol. 140 part I Copenhague.



