## International Commission for

the Northwest Atlantic Fisheries

Serial No. 5425
ICNAF Res. Doc. 79/VI/79
ANNUAL MEETING - JUNE 1979

Status of the Cod Stock in Division $3 \mathrm{M}^{1}$
by
R. Wells

Newfoundland Environment Center
St. John's, Newfoundland
Canada

## Nominal catches

Catches were generally low during 1953-59. In the periods 1960-64, 1965-69 and 1970-74, the average catches were $26,000,43,000$ and 33,000 tons respectively. Catch regulation

|  | 1974 | 1975 | 1976 | 1977 | 1978 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| TAC 000 tons | 40 | 40 | 40 | 25 | 40 | 40 |
| Catch 000 tons | 25 | 22 | 22 | 25 | 33 |  |

## Age compositions of commercial catches in 1976-78

The age compositions for 1976-78 are shown in Table 1. Age compositions for 1977 and 1978 were derived from commercial sampling on file at ICNAF. The 1976 age composition was derived from Portuguese length frequencies observed in August, September and October 1976, and from an age length key from a Canadian research vessel survey in January - February 1977 (Table 2). These age compositions, together with the corresponding length frequencies, are shown in Fig. 1 . Also shown is the length frequency of catches by Portuguese otter trawlers in the fall of 1975. The data are consistent with the progression of the dominant 1973 year-class through
the fishery over this period.

## Estimation of $F$ in the 1970 's

Table 3 shows the per mille age frequencies for 1977 and 1978. Regression parameters for a variety of age groups in the descending limb of the combined per mille catch curves for 1977 and 1978 are also shown in Table 3. It would appear that $F$ has been increasing in the most recent years to the level of about 1.6.

## Partial recruitment pattern

The percentage retention of cod by length for a 5 inch mesh is given in Hodder (1964). The average length at age derived from the current commercial sampling was applied to this retention curve to derive the percentage retention at age. See Table 4.

## Yield per recruit

A yield per recruit curve based on the data of Table 5 is shown in Fig. 2. F max is
mated to be about 0.27 .
Assuming an $F$ in 1978 of 0.8 , the partial recruitment of Table 4 and the 1978 age composition were used to estimate the stock biomasses at the beginning of 1978 and 1979 Table 6 would indicate that these values would approximate 64,000 and 51,000 tons respectively. A stock biomass in 1979 of 51,000 tons would imply an $F$ in 1979 of about 0.9 if the catch were about 25,000 tons.

[^0]Conclusions

1. The 1973 year-class has been dominant in the commercial catches in the period 1976-78.
2. The fishing mortality in 1978 was not estimated precisely but was probably higher than 0.8 and perhaps in the order of 1.6
3. The fishing mortality in 1979 implied by a catch of 25,000 tons is at least 0.9 .

## Acknowledgement

C. A. Bishop assisted in the construction of the 1977 and 1978 conmercial age compositions.

## REFERENCES

Hodder, V. M. 1964. Assessments of the effects of fishing and of increases in the mesh size trawls on the major commercial fisheries of the Newfoundland Area (ICNAF Subarea 3). Fish. Res. Bd. Canada Manu. Rept. Ser. (Biol.) No. 801, 116 pp.

Table 1. Age composition of cod in Div. 3M, 1976-78.

| AGE: | 1976 | 1977 | 1978 |
| :---: | :---: | :---: | :---: |


| 1 | 131 |  |  |
| ---: | ---: | ---: | ---: |
| 2 | 1761 | 89 | 134 |
| 3 | 28370 | 15509 | 1724 |
| 4 | 1845 | 5318 | 17749 |
| 5 | 111 | 227 | 2367 |
| 6 | 22 | 137 | 160 |
| 7 | 1 | 22 | 92 |
| 8 | 23 | 74 | 56 |
| 9 | 4 | 44 | 49 |
| 10 | 4 | 15 |  |
| 11 |  | 7 | 21 |
| 12 |  | 7 | 21 |
| 13 |  |  |  |
| 14 |  |  | 21 |
| 15 |  |  | 43 |


| Total (000) | 32272 | 21449 | 22437 |
| :--- | :---: | ---: | ---: |
| Av.Wt. (kg) | 0.69 | 1.18 | 1.56 |
| Landing (t) | 22266 | 25273 | 35000 |



Table 3. Per mille age compositions of cod in the commercial fishery in 1977 and 1978 on Flemish Cap.

| Age |  | 1977 | $\underline{1978}$ |  | 1977 and 1978 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 |  | 4 | 6 |  | 10 |
| 4 |  | 724 | 77 |  | 801 |
| 5 |  | 248 | 791 |  | 1039 |
| 6 |  | 11 | 105 |  | 116 |
| 7 |  | 6 | 7 |  | 13 |
| 8 |  | 1 | 4 |  | 5 |
| 9 |  | 3 | 3 |  | 6 |
| 10 |  | 2 | 2 |  | 4 |
| 11 |  | 1 | - |  | 1 |
| 12 |  |  | 1 |  | 1 |
| 13 |  |  | 1 |  | 1 |
| 14 |  |  |  |  |  |
| 15 |  |  | 1 |  | 1 |
| NK |  |  | 2 |  | 2 |
| Total |  | 1000 | 1000 |  | 2000 |
| regressions on in combined age frequency agatist age |  |  |  |  |  |
| age groups | slope | $r$ | t | df | F |
| 5-11 | -1.0 | . 93 | 5.6 | 5 | . 8 |
| 5-8 | -1.8 | . 99 | 8.5 | 2 | 1.6 |
| 6-11 | -. 77 | . 92 | 4.6 | 4 | . 57 |

Table 4. Percentage retention of cod by $5^{\prime \prime}$ mesh (derived from Hodder, 1964)

| AGE: | AY. LENGTH: | \& RETAIMED: |
| :---: | :---: | :---: |
| 3 | 32.84 | 7 |
| 4 | 41.43 | 37 |
| 5 | 53.30 | 90 |
| 6 | 64.64 | 100 |
| 7 | 82.90 | 100 |
| 8 | 89.26 | 100 |
| 9 | 88.86 | 100 |
| 10 | 93.94 | 100 |
| 11 | 103.00 | 100 |
| 12 | 106.33 | 100 |
| 13 | 104.85 | 100 |
| 14 | 103.00 | 100 |
| 15 | 124.00 | 100 |

Table 5. Yield per recruit for cod in Div. 3M (see Fig. 2).

| Age: | Selection Pattern:\% | Av. Wt. |
| :--- | :---: | :---: |
| 3 | .07 | 0.31 |
| 4 | .37 | 0.62 |
| 5 | .90 | 1.34 |
| 6 | 1.00 | 2.42 |
| 7 | 1.00 | 5.17 |
| 8 | 1.00 | 6.48 |
| 9 | 1.00 | 6.39 |
| 10 | 1.00 | 7.57 |
| 11 | 1.00 | 10.02 |
| 12 | 1.00 | 11.04 |
| 13 | 1.00 | 10.58 |
| 14 | 1.00 | 10.02 |
| 15 | 1.00 | 17.65 |

Natural mortaltiy $=0.2$
Maximum yield per recruit $=0.877$ at $F=0.27$ (based on $1,000,000$ recruits at age 1).

Table 6. Projected stock size in 1979 and catch in 1979 at $F=0.87$.

|  | 1978 | 1978 | 1978 | 1979 | 1979 | 1979 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AGE | Catch | F | Stock | Stock | F | Catch |
| 3 | 117 | .06 | 2200 | $(10,000)$ | .061 | 500 |
| 4 | 1501 | .30 | 6400 | 1700 | .320 | 400 |
| 5 | 15499 | .72 | 32800 | 3900 | .624 | 1900 |
| 6 | 2060 | .80 | 4100 | 13100 | .866 | 7000 |
| 7 | 139 | .80 | 300 | 1500 | .866 | 800 |
| 8 | 80 | .80 | 200 | 100 | .866 | 100 |
| 9 | 49 | .80 | 100 | 100 | .866 |  |
| 10 | 43 | .80 |  |  | .866 |  |
| 11 |  | .80 |  |  | .866 |  |
| 12 | 18 | .80 |  |  | .866 | 100 |
| 13 |  | .80 | 100 | 100 | .866 |  |
| 14 | 18 | .80 |  |  | .866 |  |
| 15 | 18 | .80 |  |  | .866 |  |
| >15 | 37 | .80 |  |  | .866 |  |
|  |  |  |  |  |  |  |
| TOTAL(000) | 19529 |  | 46,200 | 30,500 |  | 10,800 |
| WEIGHT(tons) | 30477 |  | 64,000 | 50,700 |  | 25,000 |



Fig. 1. Length and age distribution, Div. 3M cod fishery, 1975-78.

- 7 -

- 8 -

As a result of calculations performed by the Assessment Subcommittee during the discussion of this stock, estimates for 1978 of $F$, partial recruitment, and stock size of the 1973 yearclass and younger year-classes were revised.

## Fishing mortality in 1978

An estimate of total mortality between 1977 and 1978 was derived from a comparison of the catch in numbers per hour fished of ages 5 and older in 1977 and the corresponding year-classes (ages 6 and older) in 1978 as follows:

|  | Catch Tons | Effort <br> 000's Hours | Numbers Caught Per 1000 Hours Ages 5 | Numbers Caught Per 1000 Hours Ages 6 | $e^{-z}$ | Z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1977 | 25,273 | 38.50 | 157.97 |  |  |  |
| 1978 | 30,477 | 56.44 |  | 43.62 | . 287 | 1.25 |

The effort estimates were taken from Gavaris (1979).
From the Soviet young fish surveys and from commercial and research sampling, it is clear that the strengths of year-classes of cod in this Div. vary considerably. An estimation of total mortality derived from the descending 1 imb of the catch at age composition of a single year would therefore be subject to possible large bias. The relative year-class strengths of the 1968 year-class and year-classes 1971-75 were estimated by taking the geometric means of the numbers of each year-class as 1,2 and 3 year-old fish caught per hour tow in the Soviet young fish survey.

The catch at age composition for 1978 was adjusted by dividing the appropriate geometric means for these year-classes into the per mille frequency (See Table 7). Natural logarithms of this adjusted age composition were then taken and the descending limb was composed as follows:

| Year-Class | Age | In Abundance |
| :---: | :---: | :---: |
| 1972 | 6 | 2.134 |
| 1971 | 7 | -.944 |
| 1968 | 10 | -2.996 |

These abundance figures could have been calculated simply by subtracting the geometric mean indices from the natural logarithms of the per mille age composition for 1978.

The regression of the relative abundance of the 72,71 and 68 year-classes at ages 6 , 7 and 10 in 1978 has a slope of 1.14 , and the $F$, estimated at 0.94 , applies to the 1970 's period.

From a comparison of research vessel abundances estimates at age in 1978 and 1979, the $F$ in 1978 for ages 5 and older was 1.72 (Res. Doc. 79/VI/63).

On the basis of the standardized effort in 1978 of 61,000 hours and a catchability coefficient of . 0000186 from the general production model in Res. Doc. 79/VI/46, an $F=1.14$ was derived.

An average value of $F=1.3$ was used as the $F$ on fully recruited age groups in the projection given below.

Stock sizes in 1978
An F of 1.17 was used as the fishing mortality applicable to the 1973 year-class at age 5 in 1978, and would imply a stock size of this year-class as 3 year-old fish in 1976 of 93.4 million, with $\mathrm{F}=0.41$ in 1977 and 1976. Stock sizes of the 1974 and 1975 year-classes as 3 year-olds were derived from the geometric means given in Table 7 as follows:

| Year-Class | Geometric Mean | Relative Abundance | Numbers in Stock at Age 3 (millions) |
| :---: | :---: | :---: | :---: |
| 1973 | 391.51 | 1.000 | 93.418 |
| 1974 | 72.24 | 0.185 | 17.282 |
| 1975 | 11.36 | 0.029 | 2.709 |

The stock of the 1976 year-class was taken as 0.100 million fish at age 3 as catches of this year-class in the Soviet young fish as 1 and 2 year-old fish were very small. Since the catch of the 1977 year-class as 1 year-olds was 8 specimens as compared to a catch of 5 per hour specimens per hour towed of the 1975 year-class as 1 year-olds, the stock size of the 1977 year-class as 3 year-olds was estimated as $13 / 5$ of the 1975 year-class, namely 4.300 million.

## Partial recruitment in 1978

The fishing mortality acting upon the 1975 year-class in 1978, where the catch was .134 million and the stock size 2.7 milli ion was 0.057 . Since the $F$ on the 1973 year-class was estimated from cohort analysis at 0.41 in 1977 and 1976 when this year-class was age 4 and 3, the $F$ on the 1974 year-class as 3 year-olds in 1977 was assumed to be 0.41. This would lead to a reduction in the numbers of the 1974 year-class from 17.3 milion in 1977 as 3 year-olds to 9.39 million in 1978 as 4 year-olds. The catch of 4 year-olds in 1978 was 1.724 million and therefore the $F$ on this year-class was 0.225 in 1978.

From Table 4, the 5 yearwolds in 1978 were $90 \%$ recruited for an $F=0.90 \times 1.3=1.17$. Ages 6 and older were considered fully recruited at $F=1.3$.

Projection of catches in 1980 at Fmax $=0.27$ under various assumptions of catch in 1979
In Table 8, the stock size at the beginning of 1979 is estimated to be less than 40,000 tons, the TAC set for 1979. It was assumed, therefore, that the TAC in 1979 would not be taken, and the effects on the catch in 1980 at catch levels of $10,000,20,000$ and 25,000 tons in 1979 are shown. The projected catches in 1980 with fishing at Fmax $=0.27$ are $7,000,3,400$ and 1,700 tons respectively. The corresponding projected spawning biomasses in 1980 are $31,000,14,000$, and 7,000 tons respectively.

## Conclusions

1. Fishing mortality in 1978 was in the order of 1.3.
2. The stock size at the beginning of 1979 is estimated at about 32,000 tons.
3. Projected catches in 1980 with fishing at $\operatorname{Fmax}=0.27$ are 7,000 tons or less.
4. The spawning biomass in 1980 is projected to be at a low level.

## Acknowledgements

G.H. WInters calculated the $F$ values based on the catches at age per standard hour in 1977 and 1978.
W.G. Doubleday adjusted the 1978 age composition to allow for variation in yearclass size in the calculation of $z$ from the descending lint of that age composition.

## REFERENCES

Gavaris, S. 1979. Update of the Flemish Cap cod stock assessment. ICNAF Res. Doc. 79/VI/46.

Wells, R. 1979. Observations on the distribution, abundance, growth, mortality and sex and maturity of cod from the Flemish Cap. ICNAF Res. Doc. 79/VI/63.

Table 7. The estimation of the relative abundance of the 1968 year-class and the 1971-75 yearclasses in the catches in 1978 when the effects of variation in year-class size have been discounted.

| YEAR-CLASS | SOVIET SURVEYS <br> CATCH PER HOURS TOW |  |  | GEOMETRICMEANINDEX | $\begin{aligned} & \text { GEOMETRIC } \\ & \text { MEAN } \end{aligned}$ | 1978 AGE COMPOSITION |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AGE ONE YEAR | $\begin{aligned} & \text { AGE } \\ & \text { TWO YEARS } \end{aligned}$ | AGE THREE YEARS |  |  | \% | ADJUSTED | 1 n |
| 1968 | 10 | 106 | 58 | 3.68 | 39.65 | 2 | . 050 | -2.996 |
| 1971 | 22 | 87 | 3 | 2.89 | 17.99 | 7 | . 389 | -. 944 |
| 1972 | 3 | 29 | 22 | 2.52 | 12.43 | 105 | 8.447 | 2.134 |
| 1973 | 303 | 350 | 568 | 5.97 | 391.51 | 791 | 2.020 | . 703 |
| 1974 | 133 | 50 | 57 | 4.28 | 72.24 | 77 | 1.066 | . 064 |
| 1975 | 5 | 17 | 17 | 2.43 | 11.36 | 6 | . 528 | -. 639 |

The geometric mean index $=\frac{\ln (\text { age } 1)+\ln (\text { age } 2)+\ln (\text { age } 3)}{3}$

Table 8. Projection of catch in 1980 at $F_{\text {max }}=0.27$ for varying levels of catch in 1979. (Numbers in $000^{3}$, wt. in tons.)

| Age | $\begin{array}{r} \text { Catch } \\ 1978 \\ \hline \end{array}$ | $\begin{gathered} \text { Stock } \\ 1978 \\ \hline \end{gathered}$ | $\begin{gathered} F \\ 1978 \\ \hline \end{gathered}$ | $\begin{array}{r} \text { Stock } \\ 1979 \\ \hline \end{array}$ | $\begin{aligned} & \text { Catch } \\ & 1979 \mathrm{At} \\ & \mathbf{F}=1.23 \\ & \hline \end{aligned}$ | $\begin{array}{r} \text { Stock } \\ 1980 \\ \hline \end{array}$ | Catch 1980 $\text { At } F M A X=0.27$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 134 | 2700 | . 057 | 100 | 4 | 4300 | 46 |
| 4 | 1724 | 9390 | . 225 | 2087 | 367 | 77 | 3 |
| 5 | 17,749 | 27,862 | 1.17 | 6139 | 3813 | 1377 | 270 |
| 6 | 2367 | 3516 | 1.3 | 7079 | 4655 | 1638 | 354 |
| 7 | 160 | 238 | 1.3 | 784 | 515 | 1667 | 360 |
| 8 | 92 | 137 | 1.3 | 53 | 34 | 184 | 39 |
| 9 | 56 | 83 | 1.3 | 30 | 20 | 12 | 2 |
| 10 | 49 | 73 | 1.3 | 18 | 12 | 7 | 1 |
| 11 |  |  |  | 16 | 10 | 4 |  |
| 12 | 21 | 31 | 1.3 |  |  | 3 |  |
| 13 | 21 | 31 | 1.3 | 6 | 4 | 1 |  |
| 14 |  |  |  | 6 | 4 | 1 |  |
| 15 | 21 | 31 | 1.3 |  |  |  |  |
| 15 | 43 | 31 | 1.3 | 12 | 4 | 1 |  |
| Total | 22,413 | 44,123 |  | 16,337 | 9448 | 9277 | 1078 |
| . Wt. | 33,963 | 57,468 |  | 31,849 | 20,000 | 17,265 | 3403 |

Table 8. (Cont'd).

| Age | Fw 0.451 Catch 1979 | $\begin{array}{r} \text { Stock } \\ 1980 \\ \hline \end{array}$ | $\mathrm{F}=0.27$ <br> Catch 1980 | $F=2.04$ Catch 1979 | $\begin{array}{r} \text { Stock } \\ 1980 \\ \hline \end{array}$ | F-0. 27 Catch 1980 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 1 | 4300 | 46 | 7 | 4300 | 46 |
| 4 | 142 | 80 | 3 | 566 | 74 | 3 |
| 5 | 1868 | 1580 | 310 | 4814 | 1200 | 235 |
| 6 | 2345 | 3349 | 721 | 5762 | 800 | 172 |
| 7 | 259 | 3692 | 795 | 638 | 752 | 162 |
| 8 | 17 | 408 | 88 | 43 | 83 | 17 |
| 9 | 9 | 27 | 5 | 24 | 5 | 1 |
| 10 | 5 | 15 | 3 | 14 | 3 |  |
| 11 | 5 | 9 | 2 | 3 | 1 |  |
| 12 |  | 8 | 1 |  | 1 |  |
| 13 | 1 |  |  | 4 |  |  |
| 14 | 1 | 3 |  | 4 |  |  |
| 15 |  | 3 |  |  |  |  |
| 15 | 3 |  |  | 9 | 1 |  |
| Total | 4664 | 13,485 | 1979 | 11,903 | 7225 | 640 |
| Wt. | 10,000 | 33,914 | 6984 | 25,000 | 9469 | 1728 |


[^0]:    1 The Appendix to this paper was added after discussion at the April 1979 Meeting of the Assessments
    Subcomititee.

